12 resultados para Coefficient of variation

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cDNA microarray is one technological approach that has the potential to accurately measure changes in global mRNA expression levels. We report an assessment of an optimized cDNA microarray platform to generate accurate, precise and reliable data consistent with the objective of using microarrays as an acquisition platform to populate gene expression databases. The study design consisted of two independent evaluations with 70 arrays from two different manufactured lots and used three human tissue sources as samples: placenta, brain and heart. Overall signal response was linear over three orders of magnitude and the sensitivity for any element was estimated to be 2 pg mRNA. The calculated coefficient of variation for differential expression for all non-differentiated elements was 12–14% across the entire signal range and did not vary with array batch or tissue source. The minimum detectable fold change for differential expression was 1.4. Accuracy, in terms of bias (observed minus expected differential expression ratio), was less than 1 part in 10 000 for all non-differentiated elements. The results presented in this report demonstrate the reproducible performance of the cDNA microarray technology platform and the methods provide a useful framework for evaluating other technologies that monitor changes in global mRNA expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A tremendous wealth of data is accumulating on the variety and distribution of transposable elements (TEs) in natural populations. There is little doubt that TEs provide new genetic variation on a scale, and with a degree of sophistication, previously unimagined. There are many examples of mutations and other types of genetic variation associated with the activity of mobile elements. Mutant phenotypes range from subtle changes in tissue specificity to dramatic alterations in the development and organization of tissues and organs. Such changes can occur because of insertions in coding regions, but the more sophisticated TE-mediated changes are more often the result of insertions into 5′ flanking regions and introns. Here, TE-induced variation is viewed from three evolutionary perspectives that are not mutually exclusive. First, variation resulting from the intrinsic parasitic nature of TE activity is examined. Second, we describe possible coadaptations between elements and their hosts that appear to have evolved because of selection to reduce the deleterious effects of new insertions on host fitness. Finally, some possible cases are explored in which the capacity of TEs to generate variation has been exploited by their hosts. The number of well documented cases in which element sequences appear to confer useful traits on the host, although small, is growing rapidly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complex circuitry of the CA3 region and the abundance of collateral connections has made it difficult to study the mossy fiber pathway in hippocampal slices and therefore to establish the site of expression of long-term potentiation at these synapses. Using a novel cell culture system, we have produced long-term potentiation of the elementary synaptic connections on single CA3 pyramidal neurons following tetanic stimulation of individual dentate gyrus granule cells. As is the case for the hippocampal slice, this potentiation was independent of N-methyl-D-aspartate receptor activation, was simulated by application of forskolin, and its induction did not require any modulatory input. The increase in synaptic strength was accompanied by a reduction in the number of failures of transmission and by an increase in the coefficient of variation of the responses and was prevented by presynaptic injection of an inhibitor of protein kinase A. These findings show that mossy fiber long-term potentiation has a presynaptic locus and that its expression is dependent on protein kinase A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

What are the limits and modulators of neural precision? We address this question in the most regular biological oscillator known, the electric organ command nucleus in the brainstem of wave-type gymnotiform fish. These fish produce an oscillating electric field, the electric organ discharge (EOD), used in electrolocation and communication. We show here that the EOD precision, measured by the coefficient of variation (CV = SD/mean period) is as low as 2 × 10−4 in five species representing three families that range widely in species and individual mean EOD frequencies (70–1,250 Hz). Intracellular recording in the pacemaker nucleus (Pn), which commands the EOD cycle by cycle, revealed that individual Pn neurons of the same species also display an extremely low CV (CV = 6 × 10−4, 0.8 μs SD). Although the EOD CV can remain at its minimum for hours, it varies with novel environmental conditions, during communication, and spontaneously. Spontaneous changes occur as abrupt steps (250 ms), oscillations (3–5 Hz), or slow ramps (10–30 s). Several findings suggest that these changes are under active control and depend on behavioral state: mean EOD frequency and CV can change independently; CV often decreases in response to behavioral stimuli; and lesions of one of the two inputs to the Pn had more influence on CV than lesions of the other input.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Darwin observed that multiple, lowly organized, rudimentary, or exaggerated structures show increased relative variability. However, the cellular basis for these laws has never been investigated. Some animals, such as the nematode Caenorhabditis elegans, are famous for having organs that possess the same number of cells in all individuals, a property known as eutely. But for most multicellular creatures, the extent of cell number variability is unknown. Here we estimate variability in organ cell number for a variety of animals, plants, slime moulds, and volvocine algae. We find that the mean and variance in cell number obey a power law with an exponent of 2, comparable to Taylor's law in ecological processes. Relative cell number variability, as measured by the coefficient of variation, differs widely across taxa and tissues, but is generally independent of mean cell number among homologous tissues of closely related species. We show that the power law for cell number variability can be explained by stochastic branching process models based on the properties of cell lineages. We also identify taxa in which the precision of developmental control appears to have evolved. We propose that the scale independence of relative cell number variability is maintained by natural selection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe here the development of a new approach to the analysis of Escherichia coli replication control. Cells were grown at low growth rates, in which case the bacterial cell cycle approximates that of eukaryotic cells with G1, S, and G2 phases: cell division is followed sequentially by a gap period without DNA replication, replication of the single chromosome, another gap period, and finally the next cell division. Flow cytometry of such slowly growing cells reveals the timing of replication initiation as a function of cell mass. The data show that initiation is normally coupled to cell physiology extremely tightly: the distribution of individual cell masses at the time of initiation in wild-type cells is very narrow, with a coefficient of variation of less than 9%. Furthermore, a comparison between wild-type and seqA mutant cells shows that initiation occurs at a 10-20% lower mass in the seqA mutant, providing direct evidence that SeqA is a bona fide negative regulator of replication initiation. In dnaA (Ts) mutants the opposite is found: the mass at initiation is dramatically increased and the variability in cell mass at initiation is much higher than that for wild-type cells. In contrast to wild-type and dnaA(Ts) cells, seqA mutant cells frequently go through two initiation events per cell division cycle, and all the origins present in each cell are not initiated in synchrony. The implications for the complex interplay amongst growth, cell division, and DNA replication are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Expression of CC chemokine receptor 5 (CCR5), the major coreceptor for HIV-1 cell entry, and its ligands (e.g., RANTES and MIP-1α) is widely regarded as central to the pathogenesis of HIV-1 infection. By surveying nearly 3,000 HIV+ and HIV− individuals from worldwide populations for polymorphisms in the genes encoding RANTES, MIP-1α, and CCR5, we show that the evolutionary histories of human populations have had a significant impact on the distribution of variation in these genes, and that this may be responsible, in part, for the heterogeneous nature of the epidemiology of the HIV-1 pandemic. The varied distribution of RANTES haplotypes (AC, GC, and AG) associated with population-specific HIV-1 transmission- and disease-modifying effects is a striking example. Homozygosity for the AC haplotype was associated with an increased risk of acquiring HIV-1 as well as accelerated disease progression in European Americans, but not in African Americans. Yet, the prevalence of the ancestral AC haplotype is high in individuals of African origin, but substantially lower in non-Africans. In a Japanese cohort, AG-containing RANTES haplotype pairs were associated with a delay in disease progression; however, we now show that their contribution to HIV-1 pathogenesis and epidemiology in other parts of the world is negligible because the AG haplotype is infrequent in non-Far East Asians. Thus, the varied distribution of RANTES, MIP-1α, and CCR5 haplotype pairs and their population-specific phenotypic effects on HIV-1 susceptibility and disease progression results in a complex pattern of biological determinants of HIV-1 epidemiology. These findings have important implications for the design, assessment, and implementation of effective HIV-1 intervention and prevention strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patterns of variation at the Sod locus of Drosophila melanogaster suggest that the protein polymorphism at this locus has very recently arisen. In addition, it appears that a previously rare DNA variant has been recently and rapidly driven to intermediate frequency. From the size of the region (>20 kb) that has been swept along with this rare variant, and patterns of linkage disequilibrium in the region, it is inferred that strength of selection was large (s > 0.01) and that the sweep occurred more than 25,000 generations ago. In addition, there are striking similarities to patterns of variation observed at the Est6 and Est-P loci, which are located approximately 1,000 kb from Sod.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simple sequence repeats (SSRs), consisting of tandemly repeated multiple copies of mono-, di-, tri-, or tetranucleotide motifs, are ubiquitous in eukaryotic genomes and are frequently used as genetic markers, taking advantage of their length polymorphism. We have examined the polymorphism of such sequences in the chloroplast genomes of plants, by using a PCR-based assay. GenBank searches identified the presence of several (dA)n.(dT)n mononucleotide stretches in chloroplast genomes. A chloroplast (cp) SSR was identified in three pine species (Pinus contorta, Pinus sylvestris, and Pinus thunbergii) 312 bp upstream of the psbA gene. DNA amplification of this repeated region from 11 pine species identified nine length variants. The polymorphic amplified fragments were isolated and the DNA sequence was determined, confirming that the length polymorphism was caused by variation in the length of the repeated region. In the pines, the chloroplast genome is transmitted through pollen and this PCR assay may be used to monitor gene flow in this genus. Analysis of 305 individuals from seven populations of Pinus leucodermis Ant. revealed the presence of four variants with intrapopulational diversities ranging from 0.000 to 0.629 and an average of 0.320. Restriction fragment length polymorphism analysis of cpDNA on the same populations previously failed to detect any variation. Population subdivision based on cpSSR was higher (Gst = 0.22, where Gst is coefficient of gene differentiation) than that revealed in a previous isozyme study (Gst = 0.05). We anticipate that SSR loci within the chloroplast genome should provide a highly informative assay for the analysis of the genetic structure of plant populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural selection is one of the most fundamental processes in biology. However, there is still a controversy over the importance of selection in microevolution of molecular traits. Despite the general lack of data most authors hold the view that selection on molecular characters may be important, but at lower rates than selection on most phenotypic traits. Here we present evidence that natural selection may contribute substantially to molecular variation on a scale of meters only. In populations of the marine snail Littorina saxatilis living on exposed rocky shores, steep microclines in allele frequencies between splash and surf zone groups are present in the enzyme aspartate aminotransferase (allozyme locus Aat; EC. 2.6.1.1). We followed one population over 7 years, including a period of strong natural perturbation. The surf zone part of the population dominated by the allele Aat100 was suddenly eliminated by a bloom of a toxin-producing microflagellate. Downshore migration of splash zone snails with predominantly Aat120 alleles resulted in a drastic increase in surf zone frequency of Aat120, from 0.4 to 0.8 over 2 years. Over the next four to six generations, however, the frequency of Aat120 returned to the original value. We estimated the coefficient of selection of Aat120 in the surf zone to be about 0.4. Earlier studies show similar or even sharper Aat clines in other countries. Thus, we conclude that microclinal selection is an important evolutionary force in this system.