3 resultados para Clustering methods
em National Center for Biotechnology Information - NCBI
Resumo:
We introduce a method of functionally classifying genes by using gene expression data from DNA microarray hybridization experiments. The method is based on the theory of support vector machines (SVMs). SVMs are considered a supervised computer learning method because they exploit prior knowledge of gene function to identify unknown genes of similar function from expression data. SVMs avoid several problems associated with unsupervised clustering methods, such as hierarchical clustering and self-organizing maps. SVMs have many mathematical features that make them attractive for gene expression analysis, including their flexibility in choosing a similarity function, sparseness of solution when dealing with large data sets, the ability to handle large feature spaces, and the ability to identify outliers. We test several SVMs that use different similarity metrics, as well as some other supervised learning methods, and find that the SVMs best identify sets of genes with a common function using expression data. Finally, we use SVMs to predict functional roles for uncharacterized yeast ORFs based on their expression data.
Resumo:
The hierarchical properties of potential energy landscapes have been used to gain insight into thermodynamic and kinetic properties of protein ensembles. It also may be possible to use them to direct computational searches for thermodynamically stable macroscopic states, i.e., computational protein folding. To this end, we have developed a top-down search procedure in which conformation space is recursively dissected according to the intrinsic hierarchical structure of a landscape's effective-energy barriers. This procedure generates an inverted tree similar to the disconnectivity graphs generated by local minima-clustering methods, but it fundamentally differs in the manner in which the portion of the tree that is to be computationally explored is selected. A key ingredient is a branch-selection algorithm that takes advantage of statistically predictive properties of the landscape to guide searches down the tree branches that are most likely to lead to the physically relevant macroscopic states. Using the computational folding of a β-hairpin-forming peptide as an example, we show that such predictive properties indeed exist and can be used for structure prediction by free-energy global minimization.
Resumo:
The predominant localization of the major auxin-binding protein (ABP1) of maize is within the lumen of the endoplasmic reticulum. Nevertheless, all the electrophysiological evidence supporting a receptor role for ABP1 implies that a functionally important fraction of the protein must reside at the outer face of the plasma membrane. Using methods of protoplast preparation designed to minimize proteolysis, we report the detection of ABP at the surface of maize coleoptile protoplasts by the technique of silver-enhanced immunogold viewed by epipolarization microscopy. We also show that ABP clusters following auxin treatment and that this response is temperature-dependent and auxin-specific.