5 resultados para Clozapine

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of oleamide, an amidated lipid isolated from the cerebrospinal fluid of sleep-deprived cats, on serotonin receptor-mediated responses were investigated in cultured mammalian cells. In rat P11 cells, which endogenously express the 5-hydroxytryptamine2A (5HT2A) receptor, oleamide significantly potentiated 5HT-induced phosphoinositide hydrolysis. In HeLa cells expressing the 5HT7 receptor subtype, oleamide caused a concentration-dependent increase in cAMP accumulation but with lower efficacy than that observed by 5HT. This effect was not observed in untransfected HeLa cells. Clozapine did not prevent the increase in cAMP elicited by oleamide, and ketanserin caused an ≈65% decrease. In the presence of 5HT, oleamide had the opposite effect on cAMP, causing insurmountable antagonism of the concentration-effect curve to 5HT, but had no effect on cAMP levels elicited by isoproterenol or forskolin. These results indicate that oleamide can modulate 5HT-mediated signal transduction at different subtypes of mammalian 5HT receptors. Additionally, our data indicate that oleamide acts at an apparent allosteric site on the 5HT7 receptor and elicits functional responses via activation of this site. This represents a unique mechanism of activation for 5HT G protein-coupled receptors and suggests that G protein-coupled neurotransmitter receptors may act like their iontropic counterparts (i.e., γ-aminobutyric acid type A receptors) in that there may be several binding sites on the receptor that regulate functional activity with varying efficacies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic administration of the atypical antipsychotic drug, clozapine, to rodents has been shown to increase the concentration of apolipoprotein D (apoD) in several area of the brain, suggesting that apoD could be involved in the therapeutic effects of antipsychotic drugs and/or the pathology of psychotic illnesses. Here, we measured a significant decrease in the concentration of apoD in serum samples from schizophrenic patients. In contrast, apoD levels were significantly increased (92–287%) in dorsolateral prefrontal cortex (Brodmann's area 9) of schizophrenic and bipolar subjects. Elevated levels of apoD expression were also observed in the caudate of schizophrenic and bipolar subjects (68–89%). No differences in apoD immunoreactivity were detected in occipital cortex (Brodmann's area 18) in either group, or in the hippocampus, substantia nigra, or cerebellum of the schizophrenic group. The low serum concentrations of apoD observed in these patients supports recent hypotheses involving systemic insufficiencies in lipid metabolism/signaling in schizophrenia. Elevation of apoD expression selectively within central nervous system regions implicated in the pathology of these neuropsychiatric disorders suggests a focal compensatory response that neuroleptic drug regimens may augment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rat retina contains dopaminergic interplexiform cells that send processes to the outer plexiform layer where dopamine is released in a light-dependent manner. We report herein that physiologically relevant concentrations of dopamine inhibited ouabain-sensitive photoreceptor oxygen consumption in dark- and light-adapted rat retinas and inhibited Na+,K+-ATPase specific activity (EC 3.6.1.37) in a rat rod outer-inner segment preparation. Experiments with the selective D1 agonist fenoldopam or D2 agonist quinpirole and experiments with dopamine plus either the D1 antagonist SCH23390 or D2/D4 antagonist clozapine showed that the inhibition of oxygen consumption and enzyme activity were mediated by D2/D4-like receptors. The amphetamine-induced release of dopamine, monitored by the inhibition of oxygen consumption, was blocked by L-2-amino-4-phosphonobutyric acid and kynurenic acid. Pharmacological and biochemical experiments determined that the IC50 values of ouabain for the alpha1-low and alpha3-high ouabain affinity isozymes of photoreceptor Na+,K+-ATPase were approximately 10(-5) and approximately 10(-7) M, respectively, and that the D2/D4-like mediated inhibition of Na+,K+-ATPase was exclusively selective for the alpha3 isozyme. The dopamine-mediated inhibition of alpha3 first occurred at 5 nM, was maximal at 100 microM (-47%), had an IC50 value of 382 +/- 23 nM, and exhibited negative cooperativity (Hill coefficient, 0.27). Prior homogenization of the rod outer-inner segment completely prevented the long-lasting inhibition, suggesting that the effect was coupled to a second messenger. Although the physiological significance of our findings to photoreceptor function is unknown, we hypothesize that these results may have relevance for the temporal tuning properties of rods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The selective activation of the prefrontal cortical dopamine system by mild stress can be mimicked by anxiogenic beta-carbolines such as FG7142. To investigate the functional relevance of elevated levels of dopamine turnover in the prefrontal cortex, the current study examined the effects of FG7142 on the performance of spatial working memory tasks in the rat and monkey. FG7142 selectively increased prefrontal cortical dopamine turnover in rats and significantly impaired performance on spatial working memory tasks in both rats and monkeys. Spatial discrimination, a task with similar motor and motivational demands (rats), or delayed response performance following zero-second delays (monkeys) was unaffected by FG7142. Further, biochemical analysis in rats revealed a significant positive correlation between dopamine turnover in the prefrontal cortex and cognitive impairment on the delayed alternation task. The cognitive deficits in both rats and monkeys were prevented by pretreatment with the benzodiazepine receptor antagonist, RO15-1788, which blocked the increase in dopamine turnover and by the dopamine receptor antagonists, haloperidol, clozapine, and SCH23390. These findings indicate that excessive dopamine activity in the prefrontal cortex is detrimental to cognitive functions mediated by the prefrontal cortex.