3 resultados para Cloud-based MapReduce computation

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We created a simulation based on experimental data from bacteriophage T7 that computes the developmental cycle of the wild-type phage and also of mutants that have an altered genome order. We used the simulation to compute the fitness of more than 105 mutants. We tested these computations by constructing and experimentally characterizing T7 mutants in which we repositioned gene 1, coding for T7 RNA polymerase. Computed protein synthesis rates for ectopic gene 1 strains were in moderate agreement with observed rates. Computed phage-doubling rates were close to observations for two of four strains, but significantly overestimated those of the other two. Computations indicate that the genome organization of wild-type T7 is nearly optimal for growth: only 2.8% of random genome permutations were computed to grow faster, the highest 31% faster, than wild type. Specific discrepancies between computations and observations suggest that a better understanding of the translation efficiency of individual mRNAs and the functions of qualitatively “nonessential” genes will be needed to improve the T7 simulation. In silico representations of biological systems can serve to assess and advance our understanding of the underlying biology. Iteration between computation, prediction, and observation should increase the rate at which biological hypotheses are formulated and tested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple evolutionary process can discover sophisticated methods for emergent information processing in decentralized spatially extended systems. The mechanisms underlying the resulting emergent computation are explicated by a technique for analyzing particle-based logic embedded in pattern-forming systems. Understanding how globally coordinated computation can emerge in evolution is relevant both for the scientific understanding of natural information processing and for engineering new forms of parallel computing systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The collective behavior of interconnected spiking nerve cells is investigated. It is shown that a variety of model systems exhibit the same short-time behavior and rapidly converge to (approximately) periodic firing patterns with locally synchronized action potentials. The dynamics of one model can be described by a downhill motion on an abstract energy landscape. Since an energy landscape makes it possible to understand and program computation done by an attractor network, the results will extend our understanding of collective computation from models based on a firing-rate description to biologically more realistic systems with integrate-and-fire neurons.