3 resultados para Climate-Vegetation Relationships

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In coming decades, global climate changes are expected to produce large shifts in vegetation distributions at unprecedented rates. These shifts are expected to be most rapid and extreme at ecotones, the boundaries between ecosystems, particularly those in semiarid landscapes. However, current models do not adequately provide for such rapid effects—particularly those caused by mortality—largely because of the lack of data from field studies. Here we report the most rapid landscape-scale shift of a woody ecotone ever documented: in northern New Mexico in the 1950s, the ecotone between semiarid ponderosa pine forest and piñon–juniper woodland shifted extensively (2 km or more) and rapidly (<5 years) through mortality of ponderosa pines in response to a severe drought. This shift has persisted for 40 years. Forest patches within the shift zone became much more fragmented, and soil erosion greatly accelerated. The rapidity and the complex dynamics of the persistent shift point to the need to represent more accurately these dynamics, especially the mortality factor, in assessments of the effects of climate change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite striking differences in climate, soils, and evolutionary history among diverse biomes ranging from tropical and temperate forests to alpine tundra and desert, we found similar interspecific relationships among leaf structure and function and plant growth in all biomes. Our results thus demonstrate convergent evolution and global generality in plant functioning, despite the enormous diversity of plant species and biomes. For 280 plant species from two global data sets, we found that potential carbon gain (photosynthesis) and carbon loss (respiration) increase in similar proportion with decreasing leaf life-span, increasing leaf nitrogen concentration, and increasing leaf surface area-to-mass ratio. Productivity of individual plants and of leaves in vegetation canopies also changes in constant proportion to leaf life-span and surface area-to-mass ratio. These global plant functional relationships have significant implications for global scale modeling of vegetation–atmosphere CO2 exchange.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insect damage on fossil leaves from the Central Rocky Mountains, United States, documents the response of herbivores to changing regional climates and vegetation during the late Paleocene (humid, warm temperate to subtropical, predominantly deciduous), early Eocene (humid subtropical, mixed deciduous and evergreen), and middle Eocene (seasonally dry, subtropical, mixed deciduous and thick-leaved evergreen). During all three time periods, greater herbivory occurred on taxa considered to have short rather than long leaf life spans, consistent with studies in living forests that demonstrate the insect resistance of long-lived, thick leaves. Variance in herbivory frequency and diversity was highest during the middle Eocene, indicating the increased representation of two distinct herbivory syndromes: one for taxa with deciduous, palatable foliage, and the other for hosts with evergreen, thick-textured, small leaves characterized by elevated insect resistance. Leaf galling, which is negatively correlated with moisture today, apparently increased during the middle Eocene, whereas leaf mining decreased.