41 resultados para Cleft Palate
em National Center for Biotechnology Information - NCBI
Resumo:
The functions of neurotransmitters in fetal development are poorly understood. Genetic observations have suggested a role for the inhibitory amino acid neurotransmitter γ-aminobutyric acid (GABA) in the normal development of the mouse palate. Mice homozygous for mutations in the β-3 GABAA receptor subunit develop a cleft secondary palate. GABA, the ligand for this receptor, is synthesized by the enzyme glutamic acid decarboxylase. We have disrupted one of the two mouse Gad genes by gene targeting and also find defects in the formation of the palate. The striking similarity in phenotype between the receptor and ligand mutations clearly demonstrates a role for GABA signaling in normal palate development.
Resumo:
Nonsyndromic clefting of the lip and palate in humans has a highly complex etiology, with both multiple genetic loci and exposure to teratogens influencing susceptibility. Previous studies using mouse models have examined only very small portions of the genome. Here we report the findings of a genome-wide search for susceptibility genes for teratogen-induced clefting in the AXB and BXA set of recombinant inbred mouse strains. We compare results obtained using phenytoin (which induces cleft lip) and 6-aminonicotinamide (which induces cleft palate). We use a new statistical approach based on logistic regression suitable for these categorical data to identify several chromosomal regions as possible locations of clefting susceptibility loci, and we review candidate genes located within each region. Because cleft lip and cleft palate do not frequently co-aggregate in human families and because these structures arise semi-independently during development, these disorders are usually considered to be distinct in etiology. Our data, however, implicate several of the same chromosomal regions for both forms of clefting when teratogen-induced. Furthermore, different parental strain alleles are usually associated with clefting of the lip versus that of the palate (i.e., allelic heterogeneity). Because several other chromosomal regions are associated with only one form of clefting, locus heterogeneity also appears to be involved. Our findings in this mouse model suggest several priority areas for evaluation in human epidemiological studies.
Resumo:
Formation of the mammalian secondary palate is a highly regulated and complex process whose impairment often results in cleft palate, a common birth defect in both humans and animals. Loss-of-function analysis has linked a growing number of genes to this process. Here we report that Lhx8, a recently identified LIM homeobox gene, is expressed in the mesenchyme of the mouse palatal structures throughout their development. To test the function of Lhx8 in vivo, we generated a mutant mouse with a targeted deletion of the Lhx8 gene. Our analysis of the mutant animals revealed a crucial role for Lhx8 in palatogenesis. In Lhx8 homozygous mutant embryos, the bilateral primordial palatal shelves formed and elevated normally, but they often failed to make contact and to fuse properly, resulting in a cleft secondary palate. Because development of other craniofacial structures appeared normal, the impaired palatal formation in Lhx8-mutant mice was most likely caused by an intrinsic primary defect in the mesenchyme of the palatal shelves. The cleft palate phenotype observed in Lhx8-mutant mice suggests that Lhx8 is a candidate gene for the isolated nonsyndromic form of cleft palate in humans.
Resumo:
Opitz syndrome (OS) is a human genetic disease characterized by deformities such as cleft palate that are attributable to defects in embryonic development at the midline. Gene mapping has identified OS mutations within a protein called Mid1. Wild-type Mid1 predominantly colocalizes with microtubules, in contrast to mutant versions of Mid1 that appear clustered in the cytosol. Using yeast two-hybrid screening, we found that the α4-subunit of protein phosphatases 2A/4/6 binds Mid1. Epitope-tagged α4 coimmunoprecipitated endogenous or coexpressed Mid1 from COS7 cells, and this required only the conserved C-terminal region of α4. Localization of Mid1 and α4 was influenced by one another in transiently transfected cells. Mid1 could recruit α4 onto microtubules, and high levels of α4 could displace Mid1 into the cytosol. Metabolic 32P labeling of cells showed that Mid1 is a phosphoprotein, and coexpression of full-length α4 decreased Mid1 phosphorylation, indicative of a functional interaction. Association of green fluorescent protein–Mid1 with microtubules in living cells was perturbed by inhibitors of MAP kinase activation. The conclusion is that Mid1 association with microtubules, which seems important for normal midline development, is regulated by dynamic phosphorylation involving MAP kinase and protein phosphatase that is targeted specifically to Mid1 by α4. Human birth defects may result from environmental or genetic disruption of this regulatory cycle.
Resumo:
In humans, SOX9 heterozygous mutations cause the severe skeletal dysmorphology syndrome campomelic dysplasia. Except for clinical descriptions, little is known about the pathogenesis of this disease. We have generated heterozygous Sox9 mutant mice that phenocopy most of the skeletal abnormalities of this syndrome. The Sox9+/− mice died perinatally with cleft palate, as well as hypoplasia and bending of many skeletal structures derived from cartilage precursors. In embryonic day (E)14.5 heterozygous embryos, bending of radius, ulna, and tibia cartilages was already prominent. In E12.5 heterozygotes, all skeletal elements visualized by using Alcian blue were smaller. In addition, the overall levels of Col2a1 RNA at E10.5 and E12.5 were lower than in wild-type embryos. We propose that the skeletal abnormalities observed at later embryonic stages were caused by delayed or defective precartilaginous condensations. Furthermore, in E18.5 embryos and in newborn heterozygotes, premature mineralization occurred in many bones, including vertebrae and some craniofacial bones. Because Sox9 is not expressed in the mineralized portion of the growth plate, this premature mineralization is very likely the consequence of allele insufficiency existing in cells of the growth plate that express Sox9. Because the hypertrophic zone of the heterozygous Sox9 mutants was larger than that of wild-type mice, we propose that Sox9 also has a role in regulating the transition to hypertrophic chondrocytes in the growth plate. Despite the severe hypoplasia of cartilages, the overall organization and cellular composition of the growth plate were otherwise normal. Our results suggest the hypothesis that two critical steps of the chondrocyte differentiation pathway are sensitive to Sox9 dosage. First, an early step presumably at the stage of mesenchymal condensation of cartilage primordia, and second, a later step preceding the transition of chondrocytes into hypertrophic chondrocytes.
Resumo:
Objective: To determine if exposure to benzodiazepines during the first trimester of pregnancy increases risk of major malformations or cleft lip or palate.
Resumo:
Cleft lip and palate syndromes are among the most common congenital malformations in humans. Mammalian palatogenesis is a complex process involving highly regulated interactions between epithelial and mesenchymal cells of the palate to permit correct positioning of the palatal shelves, the remodeling of the extracellular matrix (ECM), and subsequent fusion of the palatal shelves. Here we show that several matrix metalloproteinases (MMPs), including a cell membrane-associated MMP (MT1-MMP) and tissue inhibitor of metalloproteinase-2 (TIMP-2) were highly expressed by the medial edge epithelium (MEE). MMP-13 was expressed both in MEE and in adjacent mesenchyme, whereas gelatinase A (MMP-2) was expressed by mesenchymal cells neighboring the MEE. Transforming growth factor (TGF)-β3-deficient mice, which suffer from clefting of the secondary palate, showed complete absence of TIMP-2 in the midline and expressed significantly lower levels of MMP-13 and slightly reduced levels of MMP-2. In concordance with these findings, MMP-13 expression was strongly induced by TGF-β3 in palatal fibroblasts. Finally, palatal shelves from prefusion wild-type mouse embryos cultured in the presence of a synthetic inhibitor of MMPs or excess of TIMP-2 failed to fuse and MEE cells did not transdifferentiate, phenocopying the defect of the TGF-β3-deficient mice. Our observations indicate for the first time that the proteolytic degradation of the ECM by MMPs is a necessary step for palatal fusion.
Resumo:
We have developed a yeast model system to address transcriptional repression by the retinoblastoma protein (pRB). When fused to the DNA-binding domain of Gal4p (DB-pRB), pRB can repress transcription of reporter genes containing Gal4p binding sites; the histone deacetylase activity encoded by yeast RPD3 is required for DB-pRB repression. Mutation of the LXCXE binding cleft in pRB, a region reported to be required for histone deacetylase recruitment, does not interfere with pRB-mediated repression. From these findings based on yeast experiments, we surmise that the small pocket region of pRB must contain an additional domain that confers histone deacetylase-dependent transcriptional repression. This hypothesis was verified by experiments examining pRB-dependent histone deacetylase association in mammalian cells. In addition to RPD3, repression by pRB in yeast requires MSI1, an ortholog of RbAp48, but not SIN3 or SAP30. By comparing the genetic requirements of DB-pRB repression in yeast to those of other DB-repressor fusions, we can suggest a mechanism by which pRB recruits histone deacetylase activity.
Resumo:
Folylpolyglutamate synthetase, which is responsible for the addition of a polyglutamate tail to folate and folate derivatives, is an ATP-dependent enzyme isolated from eukaryotic and bacterial sources, where it plays a key role in the retention of the intracellular folate pool. Here, we report the 2.4-Å resolution crystal structure of the MgATP complex of the enzyme from Lactobacillus casei. The structural analysis reveals that folylpolyglutamate synthetase is a modular protein consisting of two domains, one with a typical mononucleotide-binding fold and the other strikingly similar to the folate-binding enzyme dihydrofolate reductase. We have located the active site of the enzyme in a large interdomain cleft adjacent to an ATP-binding P-loop motif. Opposite this site, in the C domain, a cavity likely to be the folate binding site has been identified, and inspection of this cavity and the surrounding protein structure suggests that the glutamate tail of the substrate may project into the active site. A further feature of the structure is a well defined Ω loop, which contributes both to the active site and to interdomain interactions. The determination of the structure of this enzyme represents the first step toward the elucidation of the molecular mechanism of polyglutamylation of folates and antifolates.
Resumo:
We report the crystal structure of Thermus aquaticus DNA polymerase I in complex with an inhibitory Fab, TP7, directed against the native enzyme. Some of the residues present in a helical conformation in the native enzyme have adopted a γ turn conformation in the complex. Taken together, structural information that describes alteration of helical structure and solution studies that demonstrate the ability of TP7 to inhibit 100% of the polymerase activity of the enzyme suggest that the change in conformation is probably caused by trapping of an intermediate in the helix-coil dynamics of this helix by the Fab. Antibodies directed against modified helices in proteins have long been anticipated. The present structure provides direct crystallographic evidence. The Fab binds within the DNA binding cleft of the polymerase domain, interacting with several residues that are used by the enzyme in binding the primer:template complex. This result unequivocally corroborates inferences drawn from binding experiments and modeling calculations that the inhibitory activity of this Fab is directly attributable to its interference with DNA binding by the polymerase domain of the enzyme. The combination of interactions made by the Fab residues in both the polymerase and the vestigial editing nuclease domain of the enzyme reveal the structural basis of its preference for binding to DNA polymerases of the Thermus species. The orientation of the structure-specific nuclease domain with respect to the polymerase domain is significantly different from that seen in other structures of this polymerase. This reorientation does not appear to be antibody-induced and implies remarkably high relative mobility between these two domains.
Resumo:
Surmises of how myosin subfragment 1 (S1) interacts with actin filaments in muscle contraction rest upon knowing the relative arrangement of the two proteins. Although there exist crystallographic structures for both S1 and actin, as well as electron microscopy data for the acto–S1 complex (AS1), modeling of this arrangement has so far only been done “by eye.” Here we report fitted AS1 structures obtained using a quantitative method that is both more objective and makes more complete use of the data. Using undistorted crystallographic results, the best-fit AS1 structure shows significant differences from that obtained by visual fitting. The best fit is produced using the F-actin model of Holmes et al. [Holmes, K. C., Popp, D., Gebhard, W. & Kabsch, W. (1990) Nature (London) 347, 44–49]. S1 residues at the AS1 interface are now found at a higher radius as well as being translated axially and rotated azimuthally. Fits using S1 plus loops missing from the crystal structure were achieved using a homology search method to predict loop structures. These improved fits favor an arrangement in which the loop at the 50- to 20-kDa domain junction of S1 is located near the N terminus of actin. Rigid-body movements of the lower 50-kDa domain, which further improve the fit, produce closure of the large 50-kDa domain cleft and bring conserved residues in the lower 50-kDa domain into an apparently appropriate orientation for close interaction with actin. This finding supports the idea that binding of ATP to AS1 at the end of the ATPase cycle disrupts the actin binding site by changing the conformation of the 50-kDa cleft of S1.
Resumo:
X-linked adrenoleukodystrophy (X-ALD) is a peroxisomal disorder with impaired β-oxidation of very long chain fatty acids (VLCFAs) and reduced function of peroxisomal very long chain fatty acyl-CoA synthetase (VLCS) that leads to severe and progressive neurological disability. The X-ALD gene, identified by positional cloning, encodes a peroxisomal membrane protein (adrenoleukodystrophy protein; ALDP) that belongs to the ATP binding cassette transporter protein superfamily. Mutational analyses and functional studies of the X-ALD gene confirm that it and not VLCS is the gene responsible for X-ALD. Its role in the β-oxidation of VLCFAs and its effect on the function of VLCS are unclear. The complex pathology of X-ALD and the extreme variability of its clinical phenotypes are also unexplained. To facilitate understanding of X-ALD pathophysiology, we developed an X-ALD mouse model by gene targeting. The X-ALD mouse exhibits reduced β-oxidation of VLCFAs, resulting in significantly elevated levels of saturated VLCFAs in total lipids from all tissues measured and in cholesterol esters from adrenal glands. Lipid cleft inclusions were observed in adrenocortical cells of X-ALD mice under the electron microscope. No neurological involvement has been detected in X-ALD mice up to 6 months. We conclude that X-ALD mice exhibit biochemical defects equivalent to those found in human X-ALD and thus provide an experimental system for testing therapeutic intervention.
Resumo:
Elucidation of the molecular details of the cyclic actomyosin interaction requires the ability to examine structural changes at specific sites in the actin-binding interface of myosin. To study these changes dynamically, we have expressed two mutants of a truncated fragment of chicken gizzard smooth muscle myosin, which includes the motor domain and essential light chain (MDE). These mutants were engineered to contain a single tryptophan at (Trp-546) or near (Trp-625) the putative actin-binding interface. Both 546- and 625-MDE exhibited actin-activated ATPase and actin-binding activities similar to wild-type MDE. Fluorescence emission spectra and acrylamide quenching of 546- and 625-MDE suggest that Trp-546 is nearly fully exposed to solvent and Trp-625 is less than 50% exposed in the presence and absence of ATP, in good agreement with the available crystal structure data. The spectrum of 625-MDE bound to actin was quite similar to the unbound spectrum indicating that, although Trp-625 is located near the 50/20-kDa loop and the 50-kDa cleft of myosin, its conformation does not change upon actin binding. However, a 10-nm blue shift in the peak emission wavelength of 546-MDE observed in the presence of actin indicates that Trp-546, located in the A-site of the lower 50-kDa subdomain of myosin, exists in a more buried environment and may directly interact with actin in the rigor acto-S1 complex. This change in the spectrum of Trp-546 constitutes direct evidence for a specific molecular interaction between residues in the A-site of myosin and actin.
Resumo:
The yabJ gene in Bacillus subtilis is required for adenine-mediated repression of purine biosynthetic genes in vivo and codes for an acid-soluble, 14-kDa protein. The molecular mechanism of YabJ is unknown. YabJ is a member of a large, widely distributed family of proteins of unknown biochemical function. The 1.7-Å crystal structure of YabJ reveals a trimeric organization with extensive buried hydrophobic surface and an internal water-filled cavity. The most important finding in the structure is a deep, narrow cleft between subunits lined with nine side chains that are invariant among the 25 most similar homologs. This conserved site is proposed to be a binding or catalytic site for a ligand or substrate that is common to YabJ and other members of the YER057c/YjgF/UK114 family of proteins.
Resumo:
The SQD1 enzyme is believed to be involved in the biosynthesis of the sulfoquinovosyl headgroup of plant sulfolipids, catalyzing the transfer of SO3− to UDP-glucose. We have determined the structure of the complex of SQD1 from Arabidopsis thaliana with NAD+ and the putative substrate UDP-glucose at 1.6-Å resolution. Both bound ligands are completely buried within the binding cleft, along with an internal solvent cavity which is the likely binding site for the, as yet, unidentified sulfur-donor substrate. SQD1 is a member of the short-chain dehydrogenase/reductase (SDR) family of enzymes, and its structure shows a conservation of the SDR catalytic residues. Among several highly conserved catalytic residues, Thr-145 forms unusually short hydrogen bonds with both susceptible hydroxyls of UDP-glucose. A His side chain may also be catalytically important in the sulfonation.