31 resultados para Classification of protease inhibitors
em National Center for Biotechnology Information - NCBI
Resumo:
Serine proteases of the chymotrypsin fold are of great interest because they provide detailed understanding of their enzymatic properties and their proposed role in a number of physiological and pathological processes. We have been developing the macromolecular inhibitor ecotin to be a “fold-specific” inhibitor that is selective for members of the chymotrypsin-fold class of proteases. Inhibition of protease activity through the use of wild-type and engineered ecotins results in inhibition of rat prostate differentiation and retardation of the growth of human PC-3 prostatic cancer tumors. In an effort to identify the proteases that may be involved in these processes, reverse transcription–PCR with PC-3 poly(A)+ mRNA was performed by using degenerate oligonucleotide primers. These primers were designed by using conserved protein sequences unique to chymotrypsin-fold serine proteases. Five proteases were identified: urokinase-type plasminogen activator, factor XII, protein C, trypsinogen IV, and a protease that we refer to as membrane-type serine protease 1 (MT-SP1). The cloning and characterization of the MT-SP1 cDNA shows that it encodes a mosaic protein that contains a transmembrane signal anchor, two CUB domains, four LDLR repeats, and a serine protease domain. Northern blotting shows broad expression of MT-SP1 in a variety of epithelial tissues with high levels of expression in the human gastrointestinal tract and the prostate. A His-tagged fusion of the MT-SP1 protease domain was expressed in Escherichia coli, purified, and autoactivated. Ecotin and variant ecotins are subnanomolar inhibitors of the MT-SP1 activated protease domain, suggesting a possible role for MT-SP1 in prostate differentiation and the growth of prostatic carcinomas.
Resumo:
Apoptosis induced in myeloid leukemic cells by wild-type p53 was suppressed by different cleavage-site directed protease inhibitors, which inhibit interleukin-1 beta-converting enzyme-like, granzyme B and cathepsins B and L proteases. Apoptosis was also suppressed by the serine and cysteine protease inhibitor N-tosyl-L-phenylalanine chloromethylketone (TPCK) [corrected], but not by other serine or cysteine protease inhibitors including N alpha-p-tosyl-L-lysine chloromethylketone (TLCK), E64, pepstatin A, or chymostatin. Protease inhibitors suppressed induction of apoptosis by gamma-irradiation and cycloheximide but not by doxorubicin, vincristine, or withdrawal of interleukin 3 from interleukin 3-dependent 32D non-malignant myeloid cells. Induction of apoptosis in normal thymocytes by gamma-irradiation or dexamethasone was also suppressed by the cleavage-site directed protease inhibitors, but in contrast to the myeloid leukemic cells apoptosis in thymocytes was suppressed by TLCK but not by TPCK. The results indicate that (i) inhibitors of interleukin-1 beta-converting enzyme-like proteases and some other protease inhibitors suppressed induction of apoptosis by wild-type p53 and certain p53-independent pathways of apoptosis; (ii) the protease inhibitors together with the cytokines interleukin 6 and interferon-gamma or the antioxidant butylated hydroxyanisole gave a cooperative protection against apoptosis; (iii) these protease inhibitors did not suppress induction of apoptosis by some cytotoxic agents or by viability-factor withdrawal from 32D cells, whereas these pathways of apoptosis were suppressed by cytokines; (iv) there are cell type differences in the proteases involved in apoptosis; and (v) there are multiple pathways leading to apoptosis that can be selectively induced and suppressed by different agents.
Resumo:
The observed in vitro and in vivo benefit of combination treatment with anti-human immunodeficiency virus (HIV) agents prompted us to examine the potential of resistance development when two protease inhibitors are used concurrently. Recombinant HIV-1 (NL4-3) proteases containing combined resistance mutations associated with BMS-186318 and A-77003 (or saquinavir) were either inactive or had impaired enzyme activity. Subsequent construction of HIV-1 (NL4-3) proviral clones containing the same mutations yielded viruses that were severely impaired in growth or nonviable, confirming that combination therapy may be advantageous. However, passage of BMS-186318-resistant HIV-1 (RF) in the presence of either saquinavir or SC52151, which represented sequential drug treatment, produced viable viruses resistant to both BMS-186318 and the second compound. The predominant breakthrough virus contained the G48V/A71T/V82A protease mutations. The clone-purified RF (G48V/A71T/V82A) virus, unlike the corresponding defective NL4-3 triple mutant, grew well and displayed cross-resistance to four distinct protease inhibitors. Chimeric virus and in vitro mutagenesis studies indicated that the RF-specific protease sequence, specifically the Ile at residue 10, enabled the NL4-3 strain with the triple mutant to grow. Our results clearly indicate that viral genetic background will play a key role in determining whether cross-resistance variants will arise.
Resumo:
A central aspect of pathogenesis in the transmissible spongiform encephalopathies or prion diseases is the conversion of normal protease-sensitive prion protein (PrP-sen) to the abnormal protease-resistant form, PrP-res. Here we identify porphyrins and phthalocyanines as inhibitors of PrP-res accumulation. The most potent of these tetrapyrroles had IC50 values of 0.5–1 μM in scrapie-infected mouse neuroblastoma (ScNB) cell cultures. Inhibition was observed without effects on protein biosynthesis in general or PrP-sen biosynthesis in particular. Tetrapyrroles also inhibited PrP-res formation in a cell-free reaction composed predominantly of hamster PrP-res and PrP-sen. Inhibitors were found among phthalocyanines, deuteroporphyrins IX, and meso-substituted porphines; examples included compounds containing anionic, neutral protic, and cationic peripheral substituents and various metals. We conclude that certain tetrapyrroles specifically inhibit the conversion of PrP-sen to PrP-res without apparent cytotoxic effects. The inhibition observed in the cell-free conversion reaction suggests that the mechanism involved direct interactions of the tetrapyrrole with PrP-res and/or PrP-sen. These findings introduce a new class of inhibitors of PrP-res formation that represents a potential source of therapeutic agents for transmissible spongiform encephalopathies.
Cytokine suppression of protease activation in wild-type p53-dependent and p53-independent apoptosis
Resumo:
M1 myeloid leukemic cells overexpressing wild-type p53 undergo apoptosis. This apoptosis can be suppressed by some cytokines, protease inhibitors, and antioxidants. We now show that induction of apoptosis by overexpressing wild-type p53 is associated with activation of interleukin-1β-converting enzyme (ICE)-like proteases, resulting in cleavage of poly(ADP- ribose) polymerase and the proenzyme of the ICE-like protease Nedd-2. Activation of these proteases and apoptosis were suppressed by the cytokine interleukin 6 or by a combination of the cytokine interferon γ and the antioxidant butylated hydroxyanisole, and activation of poly(ADP-ribose) polymerase and apoptosis were suppressed by some protease inhibitors. In a clone of M1 cells that did not express p53, vincristine or doxorubicin induced protease activation and apoptosis that were not suppressed by protease inhibitors, but were suppressed by interleukin 6. In another myeloid leukemia (7-M12) doxorubicin also induced protease activation and apoptosis that were not suppressed by protease inhibitors, but were suppressed by granulocyte–macrophage colony-stimulating factor. The results indicate that (i) overexpression of wild-type p53 by itself or treatment with cytotoxic compounds in wild-type p53-expressing or p53-nonexpressing myeloid leukemic cells is associated with activation of ICE-like proteases; (ii) cytokines exert apoptosis-suppressing functions upstream of protease activation; (iii) the cytotoxic compounds induce additional pathways in apoptosis; and (iv) cytokines can also suppress these other components of the apoptotic machinery.
Resumo:
The proteasome is a large protease complex consisting of multiple catalytic subunits that function simultaneously to digest protein substrates. This complexity has made deciphering the role each subunit plays in the generation of specific protein fragments difficult. Positional scanning libraries of peptide vinyl sulfones were generated in which the amino acid located directly at the site of hydrolysis (P1 residue) was held constant and sequences distal to that residue (P2, P3, and P4 positions) were varied across all natural amino acids (except cysteine and methionine). Binding information for each of the individual catalytic subunits was obtained for each library under a variety of different conditions. The resulting specificity profiles indicated that substrate positions distal to P1 are critical for directing substrates to active subunits in the complex. Furthermore, specificity profiles of IFN-γ-regulated subunits closely matched those of their noninducible counterparts, suggesting that subunit swapping may modulate substrate processing by a mechanism that does require a change in the primary sequence specificity of individual catalytic subunits in the complex. Finally, specificity profiles were used to design specific inhibitors of a single active site in the complex. These reagents can be used to further establish the role of each subunit in substrate processing by the proteasome.
Resumo:
Papain family cysteine proteases are key factors in the pathogenesis of cancer invasion, arthritis, osteoporosis, and microbial infections. Targeting this enzyme family is therefore one strategy in the development of new chemotherapy for a number of diseases. Little is known, however, about the efficacy, selectivity, and safety of cysteine protease inhibitors in cell culture or in vivo. We now report that specific cysteine protease inhibitors kill Leishmania parasites in vitro, at concentrations that do not overtly affect mammalian host cells. Inhibition of Leishmania cysteine protease activity was accompanied by defects in the parasite’s lysosome/endosome compartment resembling those seen in lysosomal storage diseases. Colocalization of anti-protease antibodies with biotinylated surface proteins and accumulation of undigested debris and protease in the flagellar pocket of treated parasites were consistent with a pathway of protease trafficking from flagellar pocket to the lysosome/endosome compartment. The inhibitors were sufficiently absorbed and stable in vivo to ameliorate the pathology associated with a mouse model of Leishmania infection.
Resumo:
The crucial role of cell signaling in hemostasis is clearly established by the action of the downstream coagulation protease thrombin that cleaves platelet-expressed G-protein-coupled protease activated receptors (PARs). Certain PARs are cleaved by the upstream coagulation proteases factor Xa (Xa) and the tissue factor (TF)–factor VIIa (VIIa) complex, but these enzymes are required at high nonphysiological concentrations and show limited recognition specificity for the scissile bond of target PARs. However, defining a physiological mechanism of PAR activation by upstream proteases is highly relevant because of the potent anti-inflammatory in vivo effects of inhibitors of the TF initiation complex. Activation of substrate factor X (X) by the TF–VIIa complex is here shown to produce enhanced cell signaling in comparison to the TF–VIIa complex alone, free Xa, or Xa that is generated in situ by the intrinsic activation complex. Macromolecular assembly of X into a ternary complex of TF–VIIa–X is required for proteolytic conversion to Xa, and product Xa remains transiently associated in a TF–VIIa–Xa complex. By trapping this complex with a unique inhibitor that preserves Xa activity, we directly show that Xa in this ternary complex efficiently activates PAR-1 and -2. These experiments support the concept that proinflammatory upstream coagulation protease signaling is mechanistically coupled and thus an integrated part of the TF–VIIa-initiated coagulation pathway, rather than a late event during excessive activation of coagulation and systemic generation of proteolytic activity.
Resumo:
KIF (kinesin superfamily) proteins are microtubule-dependent molecular motors that play important roles in intracellular transport and cell division. The extent to which KIFs are involved in various transporting phenomena, as well as their regulation mechanism, are unknown. The identification of 16 new KIFs in this report doubles the existing number of KIFs known in the mouse. Conserved nucleotide sequences in the motor domain were amplified by PCR using cDNAs of mouse nervous tissue, kidney, and small intestine as templates. The new KIFs were studied with respect to their expression patterns in different tissues, chromosomal location, and molecular evolution. Our results suggest that (i) there is no apparent tendency among related subclasses of KIFs of cosegregation in chromosomal mapping, and (ii) according to their tissue distribution patterns, KIFs can be divided into two classes–i.e., ubiquitous and specific tissue-dominant. Further characterization of KIFs may elucidate unknown fundamental phenomena underlying intracellular transport. Finally, we propose a straightforward nomenclature system for the members of the mouse kinesin superfamily.
Neuroprotective activity of a new class of steroidal inhibitors of the N-methyl-d-aspartate receptor
Resumo:
Release of the excitatory neurotransmitter glutamate and the excessive stimulation of N-methyl-d-aspartate (NMDA)-type glutamate receptors is thought to be responsible for much of the neuronal death that occurs following focal hypoxia-ischemia in the central nervous system. Our laboratory has identified endogenous sulfated steroids that potentiate or inhibit NMDA-induced currents. Here we report that 3α-ol-5β-pregnan-20-one hemisuccinate (3α5βHS), a synthetic homologue of naturally occurring pregnanolone sulfate, inhibits NMDA-induced currents and cell death in primary cultures of rat hippocampal neurons. 3α5βHS exhibits sedative, anticonvulsant, and analgesic properties consistent with an action at NMDA-type glutamate receptors. Intravenous administration of 3α5βHS to rats (at a nonsedating dose) following focal cerebral ischemia induced by middle cerebral artery occlusion significantly reduces cortical and subcortical infarct size. The in vitro and in vivo neuroprotective effects of 3α5βHS demonstrate that this steroid represents a new class of potentially useful therapeutic agents for the treatment of stroke and certain neurodegenerative diseases that involve over activation of NMDA receptors.
Resumo:
Sequence-specific transactivation by p53 is essential to its role as a tumor suppressor. A modified tetracycline-inducible system was established to search for transcripts that were activated soon after p53 induction. Among 9,954 unique transcripts identified by serial analysis of gene expression, 34 were increased more than 10-fold; 31 of these had not previously been known to be regulated by p53. The transcription patterns of these genes, as well as previously described p53-regulated genes, were evaluated and classified in a panel of widely studied colorectal cancer cell lines. “Class I” genes were uniformly induced by p53 in all cell lines; “class II” genes were induced in a subset of the lines; and “class III” genes were not induced in any of the lines. These genes were also distinguished by the timing of their induction, their induction by clinically relevant chemotherapeutic agents, the absolute requirement for p53 in this induction, and their inducibility by p73, a p53 homolog. The results revealed substantial heterogeneity in the transcriptional responses to p53, even in cells derived from a single epithelial cell type, and pave the way to a deeper understanding of p53 tumor suppressor action.
Resumo:
A natural (evolutionary) classification is provided for 242 basic helix–loop–helix (bHLH) motif-containing proteins. Phylogenetic analyses of amino acid sequences describe the patterns of evolutionary change within the motif and delimit evolutionary lineages. These evolutionary lineages represent well known functional groups of proteins and can be further arranged into five groups based on binding to DNA at the hexanucleotide E-box, the amino acid patterns in other components of the motif, and the presence/absence of a leucine zipper. The hypothesized ancestral amino acid sequence for the bHLH transcription factor family is given together with the ancestral sequences of the subgroups. It is suggested that bHLH proteins containing a leucine zipper are not a natural, monophyletic group.
Resumo:
We provide a complete classification up to conjugacy of the binary shifts of finite commutant index on the hyperfinite II1, factor. There is a natural correspondence between the conjugacy classes of these shifts and polynomials over GF(2) satisfying a certain duality condition.
Resumo:
Our study of the extended metal environment, particularly of the second shell, focuses in this paper on zinc sites. Key findings include: (i) The second shell of mononuclear zinc centers is generally more polar than hydrophobic and prominently features charged residues engaged in an abundance of hydrogen bonding with histidine ligands. Histidine–acidic or histidine–tyrosine clusters commonly overlap the environment of zinc ions. (ii) Histidine tautomeric metal bonding patterns in ligating zinc ions are mixed. For example, carboxypeptidase A, thermolysin, and sonic hedgehog possess the same ligand group (two histidines, one unibidentate acidic ligand, and a bound water), but their histidine tautomeric geometries markedly differ such that the carboxypeptidase A makes only Nδ1 contacts, thermolysin makes only Nɛ2 contacts, and sonic hedgehog uses one of each. Thus the presence of a similar ligand cohort does not necessarily imply the same topology or function at the active site. (iii) Two close histidine ligands HXmH, m ≤ 5, rarely both coordinate a single metal ion in the Nδ1 tautomeric conformation, presumably to avoid steric conflicts. Mononuclear zinc sites can be classified into six types depending on the ligand composition and geometry. Implications of the results are discussed in terms of divergent and convergent evolution.
Resumo:
Protease-activated receptor 2 (PAR2) is expressed by vascular endothelial cells and other cells in which its function and physiological activator(s) are unknown. Unlike PAR1, PAR3, and PAR4, PAR2 is not activatable by thrombin. Coagulation factors VIIa (FVIIa) and Xa (FXa) are proteases that act upstream of thrombin in the coagulation cascade and require cofactors to interact with their substrates. These proteases elicit cellular responses, but their receptor(s) have not been identified. We asked whether FVIIa and FXa might activate PARs if presented by their cofactors. Co-expression of tissue factor (TF), the cellular cofactor for FVIIa, together with PAR1, PAR2, PAR3, or PAR4 conferred TF-dependent FVIIa activation of PAR2 and, to lesser degree, PAR1. Responses to FXa were also observed but were independent of exogenous cofactor. The TF/FVIIa complex converts the inactive zymogen Factor X (FX) to FXa. Strikingly, when FX was present, low picomolar concentrations of FVIIa caused robust signaling in cells expressing TF and PAR2. Responses in keratinocytes and cytokine-treated endothelial cells suggested that PAR2 may be activated directly by TF/FVIIa and indirectly by TF/FVIIa-generated FXa at naturally occurring expression levels of TF and PAR2. These results suggest that PAR2, although not activatable by thrombin, may nonetheless function as a sensor for coagulation proteases and contribute to endothelial activation in the setting of injury and inflammation. More generally, these findings highlight the potential importance of cofactors in regulating PAR function and specificity.