3 resultados para Clark, Mark W. (Mark Wayne), 1896-1984.
em National Center for Biotechnology Information - NCBI
Resumo:
Chromosome I from the yeast Saccharomyces cerevisiae contains a DNA molecule of approximately 231 kbp and is the smallest naturally occurring functional eukaryotic nuclear chromosome so far characterized. The nucleotide sequence of this chromosome has been determined as part of an international collaboration to sequence the entire yeast genome. The chromosome contains 89 open reading frames and 4 tRNA genes. The central 165 kbp of the chromosome resembles other large sequenced regions of the yeast genome in both its high density and distribution of genes. In contrast, the remaining sequences flanking this DNA that comprise the two ends of the chromosome and make up more than 25% of the DNA molecule have a much lower gene density, are largely not transcribed, contain no genes essential for vegetative growth, and contain several apparent pseudogenes and a 15-kbp redundant sequence. These terminally repetitive regions consist of a telomeric repeat called W', flanked by DNA closely related to the yeast FLO1 gene. The low gene density, presence of pseudogenes, and lack of expression are consistent with the idea that these terminal regions represent the yeast equivalent of heterochromatin. The occurrence of such a high proportion of DNA with so little information suggests that its presence gives this chromosome the critical length required for proper function.
Resumo:
The microrchidia, or morc, autosomal recessive mutation results in the arrest of spermatogenesis early in prophase I of meiosis. The morc mutation arose spontaneously during the development of a mouse strain transgenic for a tyrosinase cDNA construct. Morc −/− males are infertile and have grossly reduced testicular mass, whereas −/− females are normal, indicating that the Morc gene acts specifically during male gametogenesis. Immunofluorescence to synaptonemal complex antigens demonstrated that −/− male germ cells enter meiosis but fail to progress beyond zygotene or leptotene stage. An apoptosis assay revealed massive numbers of cells undergoing apoptosis in testes of −/− mice. No other abnormal phenotype was observed in mutant animals, with the exception of eye pigmentation caused by transgene expression in the retina. Spermatogenesis is normal in +/− males, despite significant transgene expression in germ cells. Genomic analysis of −/− animals indicates the presence of a deletion adjacent to the transgene. Identification of the gene inactivated by the transgene insertion may define a novel biochemical pathway involved in mammalian germ cell development and meiosis.