10 resultados para Chl

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Mg-chelation is found to be a prerequisite to direct protoporphyrin IX into the chlorophyll (Chl)-synthesizing branch of the tetrapyrrol pathway. The ATP-dependent insertion of magnesium into protoporphyrin IX is catalyzed by the enzyme Mg-chelatase, which consists of three protein subunits (CHL D, CHL I, and CHL H). We have chosen the Mg-chelatase from tobacco to obtain more information about the mode of molecular action of this complex enzyme by elucidating the interactions in vitro and in vivo between the central subunit CHL D and subunits CHL I and CHL H. We dissected CHL D in defined peptide fragments and assayed for the essential part of CHL D for protein–protein interaction and enzyme activity. Surprisingly, only a small part of CHL D, i.e., 110 aa, was required for interaction with the partner subunits and maintenance of the enzyme activity. In addition, it could be demonstrated that CHL D is capable of forming homodimers. Moreover, it interacted with both CHL I and CHL H. Our data led to the outline of a two-step model based on the cooperation of the subunits for the chelation process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A far-red type of oxygenic photosynthesis was discovered in Acaryochloris marina, a recently found marine prokaryote that produces an atypical pigment chlorophyll d (Chl d). The purified photosystem I reaction center complex of A. marina contained 180 Chl d per 1 Chl a with PsaA–F, -L, -K, and two extra polypeptides. Laser excitation induced absorption changes of reaction center Chl d that was named P740 after its peak wavelength. A midpoint oxidation reduction potential of P740 was determined to be +335 mV. P740 uses light of significantly low quantum energy (740 nm = 1.68 eV) but generates a reducing power almost equivalent to that produced by a special pair of Chl a (P700) that absorbs red light at 700 nm (1.77 eV) in photosystem I of plants and cyanobacteria. The oxygenic photosynthesis based on Chl d might either be an acclimation to the far-red light environments or an evolutionary intermediate between the red-absorbing oxygenic and the far-red absorbing anoxygenic photosynthesis that uses bacteriochlorophylls.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chlorophyllase (Chlase) is the first enzyme involved in chlorophyll (Chl) degradation and catalyzes the hydrolysis of ester bond to yield chlorophyllide and phytol. In the present study, we isolated the Chlase cDNA. We synthesized degenerate oligo DNA probes based on the internal amino acid sequences of purified Chlase from Chenopodium album, screened the C. album cDNA library, and cloned a cDNA (CaCLH, C. album chlorophyll-chlorophyllido hydrolase). The deduced amino acid sequence (347 aa residues) had a lipase motif overlapping with an ATP/GTP-binding motif (P-loop). CaCLH possibly was localized in the extraplastidic part of the cell, because a putative signal sequence for endoplasmic reticulum is at the N terminus. The amino acid sequence shared 37% identity with a function-unknown gene whose mRNA is inducible by coronatine and methyl jasmonate (MeJA) in Arabidopsis thaliana (AtCLH1). We expressed the gene products of AtCLH1 and of CaCLH in Escherichia coli, and they similarly exhibited Chlase activity. Moreover, we isolated another full-length cDNA based on an Arabidopsis genomic fragment and expressed it in E. coli, demonstrating the presence of the second Arabidopsis CLH gene (AtCLH2). No typical feature of signal sequence was identified in AtCLH1, whereas AtCLH2 had a typical signal sequence for chloroplast. AtCLH1 mRNA was induced rapidly by a treatment of MeJA, which is known to promote senescence and Chl degradation in plants, and a high mRNA level was maintained up to 9 h. AtCLH2, however, did not respond to MeJA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The prochlorophytes are oxygenic prokaryotes differing from other cyanobacteria by the presence of a light-harvesting system containing both chlorophylls (Chls) a and b and by the absence of phycobilins. We demonstrate here that the Chl a/b binding proteins from all three known prochlorophyte genera are closely related to IsiA, a cyanobacterial Chl a-binding protein induced by iron starvation, and to CP43, a constitutively expressed Chl a antenna protein of photosystem II. The prochlorophyte Chl a/b protein (pcb) genes do not belong to the extended gene family encoding eukaryotic Chl a/b and Chl a/c light-harvesting proteins. Although higher plants and prochlorophytes share common pigment complements, their light-harvesting systems have evolved independently.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report 13C magic angle spinning NMR observation of photochemically induced dynamic nuclear spin polarization (photo- CIDNP) in the reaction center (RC) of photosystem II (PS2). The light-enhanced NMR signals of the natural abundance 13C provide information on the electronic structure of the primary electron donor P680 (chlorophyll a molecules absorbing around 680 nm) and on the pz spin density pattern in its oxidized form, P680⨥. Most centerband signals can be attributed to a single chlorophyll a (Chl a) cofactor that has little interaction with other pigments. The chemical shift anisotropy of the most intense signals is characteristic for aromatic carbon atoms. The data reveal a pronounced asymmetry of the electronic spin density distribution within the P680⨥. PS2 shows only a single broad and intense emissive signal, which is assigned to both the C-10 and C-15 methine carbon atoms. The spin density appears shifted toward ring III. This shift is remarkable, because, for monomeric Chl a radical cations in solution, the region of highest spin density is around ring II. It leads to a first hypothesis as to how the planet can provide itself with the chemical potential to split water and generate an oxygen atmosphere using the Chl a macroaromatic cycle. A local electrostatic field close to ring III can polarize the electronic charge and associated spin density and increase the redox potential of P680 by stabilizing the highest occupied molecular orbital, without a major change of color. This field could be produced, e.g., by protonation of the keto group of ring V. Finally, the radical cation electronic structure in PS2 is different from that in the bacterial RC, which shows at least four emissive centerbands, indicating a symmetric spin density distribution over the entire bacteriochlorophyll macrocycle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The membrane proteins of peripheral light-harvesting complexes (LHCs) bind chlorophylls and carotenoids and transfer energy to the reaction centers for photosynthesis. LHCs of chlorophytes, chromophytes, dinophytes, and rhodophytes are similar in that they have three transmembrane regions and several highly conserved Chl-binding residues. All LHCs bind Chl a, but in specific taxa certain characteristic pigments accompany Chl a: Chl b and lutein in chlorophytes, Chl c and fucoxanthin in chromophytes, Chl c and peridinin in dinophytes, and zeaxanthin in rhodophytes. The specificity of pigment binding was examined by in vitro reconstitution of various pigments with a simple light-harvesting protein (LHCaR1), from a red alga (Porphyridium cruentum), that normally has eight Chl a and four zeaxanthin molecules. The pigments typical of a chlorophyte (Spinacea oleracea), a chromophyte (Thallasiosira fluviatilis), and a dinophyte (Prorocentrum micans) were found to functionally bind to this protein as evidenced by their participation in energy transfer to Chl a, the terminal pigment. This is a demonstration of a functional relatedness of rhodophyte and higher plant LHCs. The results suggest that eight Chl-binding sites per polypeptide are an ancestral trait, and that the flexibility to bind various Chl and carotenoid pigments may have been retained throughout the evolution of LHCs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chlorophyll (Chl) biosynthesis in chill (7°C)- and heat (42°C)-stressed cucumber (Cucumis sativus L. cv poinsette) seedlings was affected by 90 and 60%, respectively. Inhibition of Chl biosynthesis was partly due to impairment of 5-aminolevulinic acid biosynthesis both in chill- (78%) and heat-stress (70%) conditions. Protochlorophyllide (Pchlide) synthesis in chill- and heat-stressed seedlings was inhibited by 90 and 70%, respectively. Severe inhibition of Pchlide biosynthesis in chill-stressed seedlings was caused by inactivations of all of the enzymes involved in protoporphyrin IX (Proto IX) synthesis, Mg-chelatase, and Mg-protoporphyrin IX monoester cyclase. In heat-stressed seedlings, although 5-aminolevulinic acid dehydratase and porphobilinogen deaminase were partially inhibited, one of the porphyrinogen-oxidizing enzymes, uroporphyrinogen decarboxylase, was stimulated and coproporphyrinogen oxidase and protoporphyrinogen oxidase were not substantially affected, which demonstrated that protoporphyrin IX synthesis was relatively more resistant to heat stress. Pchlide oxidoreductase, which is responsible for phototransformation of Pchlide to chlorophyllide, increased in heat-stress conditions by 46% over that of the control seedlings, whereas it was not affected in chill-stressed seedlings. In wheat (Triticum aestivum L. cv HD2329) seedlings porphobilinogen deaminase, Pchlide synthesis, and Pchlide oxidoreductase were affected in a manner similar to that of cucumber, suggesting that temperature stress has a broadly similar effect on Chl biosynthetic enzymes in both cucumber and wheat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intact etioplasts of bean (Phaseolus vulgaris) plants exhibit proteolytic activity against the exogenously added apoprotein of the light-harvesting pigment-protein complex serving photosystem II (LHCII) that increases as etiolation is prolonged. The activity increases in the membrane fraction but not in the stroma, where it remains low and constant and is mainly directed against LHCII and protochlorophyllide oxidoreductase. The thylakoid proteolytic activity, which is low in etioplasts of 6-d-old etiolated plants, increases in plants pretreated with a pulse of light or exposed to intermittent-light (ImL) cycles, but decreases during prolonged exposure to continuous light, coincident with chlorophyll (Chl) accumulation. To distinguish between the control of Chl and/or development on proteolytic activity, we used plants exposed to ImL cycles of varying dark-phase durations. In ImL plants exposed to an equal number of ImL cycles with short or long dark intervals (i.e. equal Chl accumulation but different developmental stage) proteolytic activity increased with the duration of the dark phase. In plants exposed to ImL for equal durations to such light-dark cycles (i.e. different Chl accumulation but same developmental stage) the proteolytic activity was similar. These results suggest that the protease, which is free to act under limited Chl accumulation, is dependent on the developmental stage of the chloroplast, and give a clue as to why plants in ImL with short dark intervals contain LHCII, whereas those with long dark intervals possess only photosystem-unit cores and lack LHCII.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We tested the hypothesis that light activation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is inhibited by moderately elevated temperature through an effect on Rubisco activase. When cotton (Gossypium hirsutum L.) or wheat (Triticum aestivum L.) leaf tissue was exposed to increasing temperatures in the light, activation of Rubisco was inhibited above 35 and 30°C, respectively, and the relative inhibition was greater for wheat than for cotton. The temperature-induced inhibition of Rubisco activation was fully reversible at temperatures below 40°C. In contrast to activation state, total Rubisco activity was not affected by temperatures as high as 45°C. Nonphotochemical fluorescence quenching increased at temperatures that inhibited Rubisco activation, consistent with inhibition of Calvin cycle activity. Initial and maximal chlorophyll fluorescence were not significantly altered until temperatures exceeded 40°C. Thus, electron transport, as measured by Chl fluorescence, appeared to be more stable to moderately elevated temperatures than Rubisco activation. Western-blot analysis revealed the formation of high-molecular-weight aggregates of activase at temperatures above 40°C for both wheat and cotton when inhibition of Rubisco activation was irreversible. Physical perturbation of other soluble stromal enzymes, including Rubisco, phosphoribulokinase, and glutamine synthetase, was not detected at the elevated temperatures. Our evidence indicates that moderately elevated temperatures inhibit light activation of Rubisco via a direct effect on Rubisco activase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wollastonia biflora (L.) DC. plants accumulate the osmoprotectant 3-dimethylsulfoniopropionate (DMSP), particularly when salinized. DMSP is known to be synthesized in the chloroplast from S-methylmethionine (SMM) imported from the cytosol, but the sizes of the chloroplastic and extrachloroplastic pools of these compounds are unknown. We therefore determined DMSP and SMM in mesophyll protoplasts and chloroplasts. Salinization with 30% (v/v) artificial seawater increased protoplast DMSP levels from 4.6 to 6.0 μmol mg−1 chlorophyll (Chl), and chloroplast levels from 0.9 to 1.9 μmol mg−1 Chl. The latter are minimum values because intact chloroplasts leaked DMSP during isolation. Correcting for this leakage, it was estimated that in vivo about one-half of the DMSP is chloroplastic and that stromal DMSP concentrations in control and salinized plants are about 60 and 130 mm, respectively. Such concentrations would contribute significantly to chloroplast osmoregulation and could protect photosynthetic processes from stress injury. SMM levels were measured using a novel mass-spectrometric method. About 40% of the SMM was located in the chloroplast in unsalinized W. biflora plants, as was about 80% in salinized plants; the chloroplastic pool in both cases was approximately 0.1 μmol mg−1 Chl. In contrast, ≥85% of the SMM was extrachloroplastic in pea (Pisum sativum L.) and spinach (Spinacia oleracea L.), which lack DMSP. DMSP synthesis may be associated with enhanced accumulation of SMM in the chloroplast.