2 resultados para Chirp sonar

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Echolocating big brown bats (Eptesicus fuscus) broadcast ultrasonic frequency-modulated (FM) biosonar sounds (20–100 kHz frequencies; 10–50 μs periods) and perceive target range from echo delay. Knowing the acuity for delay resolution is essential to understand how bats process echoes because they perceive target shape and texture from the delay separation of multiple reflections. Bats can separately perceive the delays of two concurrent electronically generated echoes arriving as little as 2 μs apart, thus resolving reflecting points as close together as 0.3 mm in range (two-point threshold). This two-point resolution is roughly five times smaller than the shortest periods in the bat’s sounds. Because the bat’s broadcasts are 2,000–4,500 μs long, the echoes themselves overlap and interfere with each other, to merge together into a single sound whose spectrum is shaped by their mutual interference depending on the size of the time separation. To separately perceive the delays of overlapping echoes, the bat has to recover information about their very small delay separation that was transferred into the spectrum when the two echoes interfered with each other, thus explicitly reconstructing the range profile of targets from the echo spectrum. However, the bat’s 2-μs resolution limit is so short that the available spectral cues are extremely limited. Resolution of delay seems overly sharp just for interception of flying insects, which suggests that the bat’s biosonar images are of higher quality to suit a wider variety of orientation tasks, and that biosonar echo processing is correspondingly more sophisticated than has been suspected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While the strong biotin-avidin interaction has been widely used for the detection of biomolecules, its irreversibility complicates their isolation. We report the synthesis of a photocleavable biotin derivative (PCB) which eliminates many limitations of existing methods. This reagent contains a biotin moiety linked through a spacer arm to a photocleavable moiety, which reacts selectively with primary amino groups on any substrate. In experiments using [leucine]-enkephalin as a model substrate, we show that PCB retains its high affinity toward avidin/streptavidin and allows rapid (< 5 min) and efficient (> 99%) photorelease of the substrate in a completely unaltered form. Photocleavable biotins should be useful in numerous applications involving the isolation of proteins, nucleic acids, lipids, and cells.