7 resultados para Chemical modifications

em National Center for Biotechnology Information - NCBI


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have developed a semi-synthetic approach for preparing long stretches of DNA (>100 bp) containing internal chemical modifications and/or non-Watson–Crick structural motifs which relies on splint-free, cell-free DNA ligations and recycling of side-products by non-PCR thermal cycling. A double-stranded DNA PCR fragment containing a polylinker in its middle is digested with two restriction enzymes and a small insert (∼20 bp) containing the modification or non-Watson–Crick motif of interest is introduced into the middle. Incorrect products are recycled to starting materials by digestion with appropriate restriction enzymes, while the correct product is resistant to digestion since it does not contain these restriction sites. This semi-synthetic approach offers several advantages over DNA splint-mediated ligations, including fewer steps, substantially higher yields (∼60% overall yield) and ease of use. This method has numerous potential applications, including the introduction of modifications such as fluorophores and cross-linking agents into DNA, controlling the shape of DNA on a large scale and the study of non-sequence-specific nucleic acid–protein interactions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A variety of agricultural plant species, including corn, respond to insect herbivore damage by releasing large quantities of volatile compounds and, as a result, become highly attractive to parasitic wasps that attack the herbivores. An elicitor of plant volatiles, N-(17-hydroxylinolenoyl)-l-glutamine, named volicitin and isolated from beet armyworm caterpillars, is a key component in plant recognition of damage from insect herbivory. Chemical analysis of the oral secretion from beet armyworms that have fed on 13C-labeled corn seedlings established that the fatty acid portion of volicitin is plant derived whereas the 17-hydroxylation reaction and the conjugation with glutamine are carried out by the caterpillar by using glutamine of insect origin. Ironically, these insect-catalyzed chemical modifications to linolenic acid are critical for the biological activity that triggers the release of plant volatiles, which in turn attract natural enemies of the caterpillar.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Catalytic RNA molecules, or ribozymes, have generated significant interest as potential therapeutic agents for controlling gene expression. Although ribozymes have been shown to work in vitro and in cellular assays, there are no reports that demonstrate the efficacy of synthetic, stabilized ribozymes delivered in vivo. We are currently utilizing the rabbit model of interleukin 1-induced arthritis to assess the localization, stability, and efficacy of exogenous antistromelysin hammerhead ribozymes. The matrix metalloproteinase stromelysin is believed to be a key mediator in arthritic diseases. It seems likely therefore that inhibiting stromelysin would be a valid therapeutic approach for arthritis. We found that following intraarticular administration ribozymes were taken up by cells in the synovial lining, were stable in the synovium, and reduced synovial interleukin 1 alpha-induced stromelysin mRNA. This effect was demonstrated with ribozymes containing various chemical modifications that impart nuclease resistance and that recognize several distinct sites on the message. Catalytically inactive ribozymes were ineffective, thus suggesting a cleavage-mediated mechanism of action. These results suggest that ribozymes may be useful in the treatment of arthritic diseases characterized by dysregulation of metalloproteinase expression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report a general mass spectrometric approach for the rapid identification and characterization of proteins isolated by preparative two-dimensional polyacrylamide gel electrophoresis. This method possesses the inherent power to detect and structurally characterize covalent modifications. Absolute sensitivities of matrix-assisted laser desorption ionization and high-energy collision-induced dissociation tandem mass spectrometry are exploited to determine the mass and sequence of subpicomole sample quantities of tryptic peptides. These data permit mass matching and sequence homology searching of computerized peptide mass and protein sequence data bases for known proteins and design of oligonucleotide probes for cloning unknown proteins. We have identified 11 proteins in lysates of human A375 melanoma cells, including: alpha-enolase, cytokeratin, stathmin, protein disulfide isomerase, tropomyosin, Cu/Zn superoxide dismutase, nucleoside diphosphate kinase A, galaptin, and triosephosphate isomerase. We have characterized several posttranslational modifications and chemical modifications that may result from electrophoresis or subsequent sample processing steps. Detection of comigrating and covalently modified proteins illustrates the necessity of peptide sequencing and the advantages of tandem mass spectrometry to reliably and unambiguously establish the identity of each protein. This technology paves the way for studies of cell-type dependent gene expression and studies of large suites of cellular proteins with unprecedented speed and rigor to provide information complementary to the ongoing Human Genome Project.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structures of complex polyketide natural products, such as erythromycin, are programmed by multifunctional polyketide synthases (PKSs) that contain modular arrangements of functional domains. The colinearity between the activities of modular PKS domains and structure of the polyketide product portends the generation of novel organic compounds—“unnatural” natural products—by genetic manipulation. We have engineered the erythromycin polyketide synthase genes to effect combinatorial alterations of catalytic activities in the biosynthetic pathway, generating a library of >50 macrolides that would be impractical to produce by chemical methods. The library includes examples of analogs with one, two, and three altered carbon centers of the polyketide products. The manipulation of multiple biosynthetic steps in a PKS is an important milestone toward the goal of producing large libraries of unnatural natural products for biological and pharmaceutical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The RESID Database is a comprehensive collection of annotations and structures for protein post-translational modifications including N-terminal, C-terminal and peptide chain cross-link modifications. The RESID Database includes systematic and frequently observed alternate names, Chemical Abstracts Service registry numbers, atomic formulas and weights, enzyme activities, taxonomic range, keywords, literature citations with database cross-references, structural diagrams and molecular models. The NRL-3D Sequence–Structure Database is derived from the three-dimensional structure of proteins deposited with the Research Collaboratory for Structural Bioinformatics Protein Data Bank. The NRL-3D Database includes standardized and frequently observed alternate names, sources, keywords, literature citations, experimental conditions and searchable sequences from model coordinates. These databases are freely accessible through the National Cancer Institute–Frederick Advanced Biomedical Computing Center at these web sites: http://www.ncifcrf.gov/RESID, http://www.ncifcrf.gov/ NRL-3D; or at these National Biomedical Research Foundation Protein Information Resource web sites: http://pir.georgetown.edu/pirwww/dbinfo/resid.html, http://pir.georgetown.edu/pirwww/dbinfo/nrl3d.html

Relevância:

30.00% 30.00%

Publicador:

Resumo:

According to the classical calcium hypothesis of synaptic transmission, the release of neurotransmitter from presynaptic terminals occurs through an exocytotic process triggered by depolarization-induced presynaptic calcium influx. However, evidence has been accumulating in the last two decades indicating that, in many preparations, synaptic transmitter release can persist or even increase when calcium is omitted from the perfusing saline, leading to the notion of a "calcium-independent release" mechanism. Our study shows that the enhancement of synaptic transmission between photoreceptors and horizontal cells of the vertebrate retina induced by low-calcium media is caused by an increase of calcium influx into presynaptic terminals. This paradoxical effect is accounted for by modifications of surface potential on the photoreceptor membrane. Since lowering extracellular calcium concentration may likewise enhance calcium influx into other nerve cells, other experimental observations of "calcium-independent" release may be reaccommodated within the framework of the classical calcium hypothesis without invoking unconventional processes.