9 resultados para Chelation
em National Center for Biotechnology Information - NCBI
Resumo:
The Mg-chelation is found to be a prerequisite to direct protoporphyrin IX into the chlorophyll (Chl)-synthesizing branch of the tetrapyrrol pathway. The ATP-dependent insertion of magnesium into protoporphyrin IX is catalyzed by the enzyme Mg-chelatase, which consists of three protein subunits (CHL D, CHL I, and CHL H). We have chosen the Mg-chelatase from tobacco to obtain more information about the mode of molecular action of this complex enzyme by elucidating the interactions in vitro and in vivo between the central subunit CHL D and subunits CHL I and CHL H. We dissected CHL D in defined peptide fragments and assayed for the essential part of CHL D for protein–protein interaction and enzyme activity. Surprisingly, only a small part of CHL D, i.e., 110 aa, was required for interaction with the partner subunits and maintenance of the enzyme activity. In addition, it could be demonstrated that CHL D is capable of forming homodimers. Moreover, it interacted with both CHL I and CHL H. Our data led to the outline of a two-step model based on the cooperation of the subunits for the chelation process.
Resumo:
We describe a method to facilitate radioimaging with technetium-99m (99mTc) by genetic incorporation of a 99mTc chelation site in recombinant single-chain Fv (sFv) antibody proteins. This method relies on fusion of the sFv C terminus with a Gly4Cys peptide that specifically coordinates 99mTc. By using analogues of the 26-10 anti-digoxin sFv as our primary model, we find that addition of the chelate peptide, to form 26-10-1 sFv', does not alter the antigen-binding affinity of sFv. We have demonstrated nearly quantitative chelation of 0.5-50 mCi of 99mTc per mg of 26-10-1 sFv' (1 Ci = 37 GBq). These 99mTc-labeled sFv' complexes are highly stable to challenge with saline buffers, plasma, or diethylenetriaminepentaacetic acid. We find that the 99mTc-labeled 741F8-1 sFv', specific for the c-erbB-2 tumor-associated antigen, is effective in imaging human ovarian carcinoma in a scid mouse tumor xenograft model. This fusion chelate methodology should be applicable to diagnostic imaging with 99mTc and radioimmunotherapy with 186Re or 188Re, and its use could extend beyond the sFv' to other engineered antibodies, recombinant proteins, and synthetic peptides.
Resumo:
Previously metal-ion sites have been used as structural and functional probes in seven transmembrane receptors (7TM), but as yet all the engineered sites have been inactivating. Based on presumed agonist interaction points in transmembrane III (TM-III) and -VII of the β2-adrenergic receptor, in this paper we construct an activating metal-ion site between the amine-binding Asp-113 in TM-III—or a His residue introduced at this position—and a Cys residue substituted for Asn-312 in TM-VII. No increase in constitutive activity was observed in the mutant receptors. Signal transduction was activated in the mutant receptors not by normal catecholamine ligands but instead either by free zinc ions or by zinc or copper ions in complex with small hydrophobic metal-ion chelators. Chelation of the metal ions by small hydrophobic chelators such as phenanthroline or bipyridine protected the cells from the toxic effect of, for example Cu2+, and in several cases increased the affinity of the ions for the agonistic site. Wash-out experiments and structure–activity analysis indicated, that the high-affinity chelators and the metal ions bind and activate the mutant receptor as metal ion guided ligand complexes. Because of the well-understood binding geometry of the small metal ions, an important distance constraint has here been imposed between TM-III and -VII in the active, signaling conformation of 7TM receptors. It is suggested that atoxic metal-ion chelator complexes could possibly in the future be used as generic, pharmacologic tools to switch 7TM receptors with engineered metal-ion sites on or off at will.
Resumo:
We have investigated in rat pheochromacytoma PC12 cells the activation of the mitogen-activated protein kinases ERK1 and ERK2 by the mitochondrial uncoupler carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP). This treatment slowly decreases ATP levels to 30% of control, whereas the internal calcium level rises very rapidly to 250% of control, derived from internal stores. Tyrosine phosphorylation of ERK1 and ERK2 increases gradually, starting after 5 min of treatment, to reach a maximum at 30 min; the kinase activity reaches 250% when measured after 1 hr of treatment. The drop in ATP levels is slower still. Comparison of the time courses of the rapid rise in cytosolic calcium with the slower increase in ERK1 and ERK2 activation suggests one or more intermediate stages in this pathway. Chelation of cytosolic calcium with dimethyl bis-(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid abolished the FCCP-stimulated rise in internal calcium, as well as the tyrosine phosphorylation and the activation of the ERKs. Surprisingly, caffeine, which releases calcium from different internal stores, did not increase the tyrosine phosphorylation and did not activate the ERKs. The FCCP effect on calcium storage may be related to mitochondrial dysfunction in Alzheimer disease, which might result in ineffective buffering of cytosolic calcium that leads to mitogen-activated protein kinase activation and subsequent protein phosphorylations.
Resumo:
NifH (dinitrogenase reductase) has three important roles in the nitrogenase enzyme system. In addition to its role as the obligate electron donor to dinitrogenase, NifH is required for the iron–molybdenum cofactor (FeMo-co) synthesis and apodinitrogenase maturation. We have investigated the requirement of the Fe–S cluster of NifH for these processes by preparing apoNifH. The 4Fe–4S cluster of NifH was removed by chelation of the cluster with α, α′-bipyridyl. The resulting apoNifH was tested in in vitro FeMo-co synthesis and apodinitrogenase maturation reactions and was found to function in both these processes. Thus, the presence of a redox active 4Fe–4S cluster in NifH is not required for its function in FeMo-co synthesis and in apodinitrogenase maturation. This, in turn, implies that the role of NifH in these processes is not one of electron transfer or of iron or sulfur donation.
Resumo:
Leukocyte migration from a hemopoietic pool across marrow endothelium requires active pseudopod formation and adhesion. Leukocytes rarely show pseudopod formation while in circulation. At question then is the mechanism that serves to minimize leukocyte pseudopod formation in the circulation. We tested the hypothesis that fluid shear stress acts to prevent pseudopod formation. When individual human leukocytes (neutrophils, monocytes) spreading on glass surfaces in vitro were subjected to fluid shear stress (≈1 dyn/cm2), an instantaneous retraction of pseudopods was observed. Removal of the fluid shear stress in turn led to the return of pseudopod projection and cell spreading. When steady shear stress was prolonged over several minutes, leukocyte swelling occurs together with an enhanced random motion of cytoplasmic granules and a reduction of cytoplasmic stiffness. The response to shear stress could be suppressed by K+ channel blockers and chelation of external Ca2+. In rat mesentery microvessels after occlusion, circulating leukocytes project pseudopods in free suspension or when attached to the endothelium, even though immediately after occlusion only few pseudopods were present. When flow was restored, pseudopods on adhering leukocytes were retracted and then the cells began to roll and detach from the endothelium. In conclusion, plasma shear stress in the circulation serves to reduce pseudopod projection and adhesion of circulating leukocytes and vice versa reduction of shear stress leads to pseudopod projection and spreading of leukocytes on the endothelium.
Resumo:
(RS)-2-cis, 4-trans-abscisic acid (ABA), a naturally occurring plant stress hormone, elicited rapid agonist-specific changes in myo-inositol hexakisphosphate (InsP6) measured in intact guard cells of Solanum tuberosum (n = 5); these changes were not reproduced by (RS)-2-trans, 4-trans-abscisic acid, an inactive stereoisomer of ABA (n = 4). The electrophysiological effects of InsP6 were assessed on both S. tuberosum (n = 14) and Vicia faba (n = 6) guard cell protoplasts. In both species, submicromolar concentrations of InsP6, delivered through the patch electrode, mimicked the inhibitory effects of ABA and internal calcium (Cai2+) on the inward rectifying K+ current, IK,in, in a dose-dependent manner. Steady state block of IK,in by InsP6 was reached much more quickly in Vicia (3 min at ≈1 μM) than Solanum (20–30 min). The effects of InsP6 on IK,in were specific to the myo-inositol isomer and were not elicited by other conformers of InsP6 (e.g., scyllo- or neo-). Chelation of Ca2+ by inclusion of 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid or EGTA in the patch pipette together with InsP6 prevented the inhibition of IK,in, suggesting that the effect is Ca2+ dependent. InsP6 was ≈100-fold more potent than Ins(1,4,5)P3 in modulating IK,in. Thus ABA increases InsP6 in guard cells, and InsP6 is a potent Ca2+-dependent inhibitor of IK,in. Taken together, these results suggest that InsP6 may play a major role in the physiological response of guard cells to ABA.
Resumo:
The NagC and Mlc proteins are homologous transcriptional regulators that control the expression of several phosphotransferase system (PTS) genes in Escherichia coli. NagC represses nagE, encoding the N-acetylglucosamine-specific transporter, while Mlc represses three PTS operons, ptsG, manXYZ and ptsHIcrr, involved in the uptake of glucose. NagC and Mlc can bind to each others operator, at least in vitro. A binding site selection procedure was used to try to distinguish NagC and Mlc sites. The major difference was that all selected NagC binding sites had a G or a C at positions +11/–11 from the centre of symmetry. This is also the case for most native NagC sites, but not the nagE operator, which thus looks like a potential Mlc target. The nagE operator does exhibit a higher affinity for Mlc than NagC, but no regulation of nagE by physiological concentrations of Mlc was detected in vivo. Regulation of wild-type nagE by NagC is achieved because of the chelation effect due to a second high affinity NagC operator covering the nagB promoter. Replacing the A/T at +11/–11 with C/G allows repression by NagC in the absence of the nagB operator.
Resumo:
Nicotianamine (NA) occurs in all plants and chelates metal cations, including FeII, but reportedly not FeIII. However, a comparison of the FeII and ZnII affinity constants of NA and various FeIII-chelating aminocarboxylates suggested that NA should chelate FeIII. High-voltage electrophoresis of the FeNA complex formed in the presence of FeIII showed that the complex had a net charge of 0, consistent with the hexadentate chelation of FeIII. Measurement of the affinity constant for FeIII yielded a value of 1020.6, which is greater than that for the association of NA with FeII (1012.8). However, capillary electrophoresis showed that in the presence of FeII and FeIII, NA preferentially chelates FeII, indicating that the FeIINA complex is kinetically stable under aerobic conditions. Furthermore, Fe complexes of NA are relatively poor Fenton reagents, as measured by their ability to mediate H2O2-dependent oxidation of deoxyribose. This suggests that NA will have an important role in scavenging Fe and protecting the cell from oxidative damage. The pH dependence of metal ion chelation by NA and a typical phytosiderophore, 2′-deoxymugineic acid, indicated that although both have the ability to chelate Fe, when both are present, 2′-deoxymugineic acid dominates the chelation process at acidic pH values, whereas NA dominates at alkaline pH values. The consequences for the role of NA in the long-distance transport of metals in the xylem and phloem are discussed.