3 resultados para Checking accounts

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Histamine H2 receptors transfected in Chinese hamster ovary (CHO) cells are time- and dose-dependently upregulated upon exposure to the H2 antagonists cimetidine and ranitidine. This effect appears to be H2 receptor-mediated as no change in receptor density was observed after H1 or H3 antagonist treatment or after incubation with the structural analogue of cimetidine, VUF 8299, which has no H2 antagonistic effects. By using transfected CHO cells expressing different densities of wild-type H2 receptors or an uncoupled H2Leu124Ala receptor, the histamine H2 receptor was found to display considerable agonist-independent H2 receptor activity. Cimetidine and ranitidine, which both induce H2 receptor upregulation, actually functioned as inverse agonists in those cell lines displaying spontaneous agonist-independent H2 receptor activity. Burimamide, on the other hand, was shown to act as a neutral antagonist and did as expected not induce H2 receptor upregulation after long-term exposure. The displayed inverse agonism of H2 antagonists appears to be a mechanistic basis for the observed H2 antagonist-induced H2 receptor upregulation in transfected CHO cells. These observations shed new light on the pharmacological classification of the H2 antagonists and may offer a plausible explanation for the observed development of tolerance after prolonged clinical use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The genes of the homeotic complex (HOX) encode DNA binding homeodomain proteins that control developmental fates by differentially regulating the transcription of downstream target genes. Despite their unique in vivo functions, disparate HOX proteins often bind to very similar DNA sequences in vitro. Thus, a critical question is how HOX proteins select the correct sets of target genes in vivo. The homeodomain proteins encoded by the Drosophila extradenticle gene and its mammalian homologues, the pbx genes, contribute to HOX specificity by cooperatively binding to DNA with HOX proteins. For example, the HOX protein labial cooperatively binds with extradenticle protein to a 20-bp oligonucleotide that is sufficient to direct a labial-like expression pattern in Drosophila embryos. Here we have analyzed the protein-DNA interactions that are important for forming the labial-extradenticle-DNA complex. The data suggest a model in which labial and extradenticle, separated by only 4 bp, bind this DNA as a heterodimer in a head-to-tail orientation. We have confirmed several aspects of this model by characterizing extradenticle-HOX binding to mutant oligonucleotides. Most importantly, mutations in base pairs predicted to contact the HOX N-terminal arm resulted in a change in HOX preference in the heterodimer, from labial to Ultrabithorax. These results demonstrate that extradenticle prefers to bind cooperatively with different HOX proteins depending on subtle differences in the heterodimer binding site.