143 resultados para Charleston, S.C. Citadel Academy.

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The vertebrate lens is a tissue composed of terminally differentiated fiber cells and anterior lens epithelial cells. The abundant, preferential expression of the soluble proteins called crystallins creates a transparent, refractive index gradient in the lens. Several transcription factors such as Pax6, Sox1, and L-Maf have been shown to regulate lens development. Here we show that mice lacking the transcription factor c-Maf are microphthalmic secondary to defective lens formation, specifically from the failure of posterior lens fiber elongation. The marked impairment of crystallin gene expression observed is likely explained by the ability of c-Maf to transactivate the crystallin gene promoter. Thus, c-Maf is required for the differentiation of the vertebrate lens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vitamin C (l-ascorbic acid; AsA) acts as a potent antioxidant and cellular reductant in plants and animals. AsA has long been known to have many critical physiological roles in plants, yet its biosynthesis is only currently being defined. A pathway for AsA biosynthesis that features GDP-mannose and l-galactose has recently been proposed for plants. We have isolated a collection of AsA-deficient mutants of Arabidopsis thaliana that are valuable tools for testing of an AsA biosynthetic pathway. The best-characterized of these mutants (vtc1) contains ≈25% of wild-type AsA and is defective in AsA biosynthesis. By using a combination of biochemical, molecular, and genetic techniques, we have demonstrated that the VTC1 locus encodes a GDP-mannose pyrophosphorylase (mannose-1-P guanyltransferase). This enzyme provides GDP-mannose, which is used for cell wall carbohydrate biosynthesis and protein glycosylation as well as for AsA biosynthesis. In addition to genetically defining the first locus involved in AsA biosynthesis, this work highlights the power of using traditional mutagenesis techniques coupled with the Arabidopsis Genome Initiative to rapidly clone physiologically important genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ALL-1 gene was discovered by virtue of its involvement in human acute leukemia. Its Drosophila homolog trithorax (trx) is a member of the trx-Polycomb gene family, which maintains correct spatial expression of the Antennapedia and bithorax complexes during embryogenesis. The C-terminal SET domain of ALL-1 and TRITHORAX (TRX) is a 150-aa motif, highly conserved during evolution. We performed yeast two hybrid screening of Drosophila cDNA library and detected interaction between a TRX polypeptide spanning SET and the SNR1 protein. SNR1 is a product of snr1, which is classified as a trx group gene. We found parallel interaction in yeast between the SET domain of ALL-1 and the human homolog of SNR1, INI1 (hSNF5). These results were confirmed by in vitro binding studies and by demonstrating coimmunoprecipitation of the proteins from cultured cells and/or transgenic flies. Epitope-tagged SNR1 was detected at discrete sites on larval salivary gland polytene chromosomes, and these sites colocalized with around one-half of TRX binding sites. Because SNR1 and INI1 are constituents of the SWI/SNF complex, which acts to remodel chromatin and consequently to activate transcription, the interactions we observed suggest a mechanism by which the SWI/SNF complex is recruited to ALL-1/trx targets through physical interactions between the C-terminal domains of ALL-1 and TRX and INI1/SNR1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oligoanions such as sodium triphosphate or GTP prevent and/or reverse vinblastine-induced polymerization of tubulin. We now show that the anions of glutamate-rich extreme C termini of tubulin are similarly involved in the regulation of the vinblastine effect. Cleavage of the C termini by limited proteolysis with subtilisin enhances vinblastine-induced tubulin polymerization and abolishes the anion effect. Only the β-tubulin C terminus needs to be removed to achieve these changes and the later cleavage of the α-tubulin C terminus has little additional effect. In fact, vinblastine concentrations >20 μM block cleavage of the α-tubulin C terminus in the polymer, whereas cleavage of the β-tubulin C terminus proceeds unimpeded over the time used. The vinblastine effect on tubulin polymerization is also highly pH-dependent between pH 6.5 and 7.5; this is less marked, but not absent, after subtilisin treatment. A working model is proposed wherein an anionic domain proximal to the extreme C terminus must interact with a cationic domain to permit vinblastine to promote polymerization. Both exogenous and extreme C-terminal anions compete for the cationic domain with the proximal anionic domain to prevent vinblastine-induced polymerization. We conclude that the electrostatic regulation of tubulin polymerization induced by vinblastine resides primarily in the β-tubulin C terminus but that additional regulation proximal in the tubulin molecule also plays a role.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Subunits a and c of Fo are thought to cooperatively catalyze proton translocation during ATP synthesis by the Escherichia coli F1Fo ATP synthase. Optimizing mutations in subunit a at residues A217, I221, and L224 improves the partial function of the cA24D/cD61G double mutant and, on this basis, these three residues were proposed to lie on one face of a transmembrane helix of subunit a, which then interacted with the transmembrane helix of subunit c anchoring the essential aspartyl group. To test this model, in the present work Cys residues were introduced into the second transmembrane helix of subunit c and the predicted fourth transmembrane helix of subunit a. After treating the membrane vesicles of these mutants with Cu(1,10-phenanthroline)2SO4 at 0°, 10°, or 20°C, strong a–c dimer formation was observed at all three temperatures in membranes of 7 of the 65 double mutants constructed, i.e., in the aS207C/cI55C, aN214C/cA62C, aN214C/cM65C, aI221C/cG69C, aI223C/cL72C, aL224C/cY73C, and aI225C/cY73C double mutant proteins. The pattern of cross-linking aligns the helices in a parallel fashion over a span of 19 residues with the aN214C residue lying close to the cA62C and cM65C residues in the middle of the membrane. Lesser a–c dimer formation was observed in nine other double mutants after treatment at 20°C in a pattern generally supporting that indicated by the seven landmark residues cited above. Cross-link formation was not observed between helix-1 of subunit c and helix-4 of subunit a in 19 additional combinations of doubly Cys-substituted proteins. These results provide direct chemical evidence that helix-2 of subunit c and helix-4 of subunit a pack close enough to each other in the membrane to interact during function. The proximity of helices supports the possibility of an interaction between Arg210 in helix-4 of subunit a and Asp61 in helix-2 of subunit c during proton translocation, as has been suggested previously.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ubiquitously expressed nonreceptor tyrosine kinase c-Abl contains three nuclear localization signals, however, it is found in both the nucleus and the cytoplasm of proliferating fibroblasts. A rapid and transient loss of c-Abl from the nucleus is observed upon the initial adhesion of fibroblasts onto a fibronectin matrix, suggesting the possibility of nuclear export [Lewis, J., Baskaran, R., Taagepera, S., Schwartz, M. & Wang, J. (1996) Proc. Natl. Acad. Sci. USA 93, 15174–15179]. Here we show that the C terminus of c-Abl does indeed contain a functional nuclear export signal (NES) with the characteristic leucine-rich motif. The c-Abl NES can functionally complement an NES-defective HIV Rev protein (RevΔ3NI) and can mediate the nuclear export of glutathione-S-transferase. The c-Abl NES function is sensitive to the nuclear export inhibitor leptomycin B. Mutation of a single leucine (L1064A) in the c-Abl NES abrogates export function. The NES-mutated c-Abl, termed c-Abl NES(−), is localized exclusively to the nucleus. Treatment of cells with leptomycin B also leads to the nuclear accumulation of wild-type c-Abl protein. The c-Abl NES(−) is not lost from the nucleus when detached fibroblasts are replated onto fibronectin matrix. Taken together, these results demonstrate that c-Abl shuttles continuously between the nucleus and the cytoplasm and that the rate of nuclear import and export can be modulated by the adherence status of fibroblastic cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phosphatidylcholine-specific phospholipase C (PC-PLC) is a necessary intermediate in transducing apoptotic signals for tumor necrosis factor and Fas/Apo-1 ligands in nonneuronal cells. The data presented here show that PC-PLC also is required in oxidative glutamate-induced programmed cell death of both immature cortical neurons and a hippocampal nerve cell line, HT22. In oxidative glutamate toxicity, which is distinct from excitotoxicity, glutamate interferes with cystine uptake by blocking the cystine/glutamate antiporter, indirectly causing a depletion of intracellular glutathione. A PC-PLC inhibitor blocks oxidative glutamate toxicity, and exogenous PC-PLC potentiates glutamate toxicity. The inhibition of PC-PLC uncouples the cystine uptake from glutamate inhibition, allowing the maintenance of glutathione synthesis and cell viability. These data suggest that PC-PLC modulates neuronal cell death through a mechanism that is distinct from that involved in nonneuronal apoptosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A variety of intracellular signaling pathways can modulate the properties of voltage-gated ion channels. Some of them are well characterized. However, the diffusible second messenger mediating suppression of M current via G protein-coupled receptors has not been identified. In superior cervical ganglion neurons, we find that the signaling pathways underlying M current inhibition by B2 bradykinin and M1 muscarinic receptors respond very differently to inhibitors. The bradykinin pathway was suppressed by the phospholipase C inhibitor U-73122, by blocking the IP3 receptor with pentosan polysulfate or heparin, and by buffering intracellular calcium, and it was occluded by allowing IP3 to diffuse into the cytoplasm via a patch pipette. By contrast, the muscarinic pathway was not disrupted by any of these treatments. The addition of bradykinin was accompanied by a [Ca2+]i rise with a similar onset and time to peak as the inhibition of M current. The M current inhibition and the rise of [Ca2+]i were blocked by depletion of Ca2+ internal stores by thapsigargin. We conclude that bradykinin receptors inhibit M current of sympathetic neurons by activating phospholipase C and releasing Ca2+ from IP3-sensitive Ca2+ stores, whereas muscarinic receptors do not use the phospholipase C pathway to inhibit M current channels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Activation by growth factors of the Ras-dependent signaling cascade results in the induction of p90 ribosomal S6 kinases (p90rsk). These are translocated into the nucleus upon phosphorylation by mitogen-activated protein kinases, with which p90rsk are physically associated in the cytoplasm. In humans there are three isoforms of the p90rsk family, Rsk-1, Rsk-2, and Rsk-3, which are products of distinct genes. Although these isoforms are structurally very similar, little is known about their functional specificity. Recently, mutations in the Rsk-2 gene have been associated with the Coffin–Lowry syndrome (CLS). We have studied a fibroblast cell line established from a CLS patient that bears a nonfunctional Rsk-2. Here we document that in CLS fibroblasts there is a drastic attenuation in the induced Ser-133 phosphorylation of transcription factor CREB (cAMP response element-binding protein) in response to epidermal growth factor stimulation. The effect is specific, since response to serum, cAMP, and UV light is unaltered. Furthermore, epidermal growth factor-induced expression of c-fos is severely impaired in CLS fibroblasts despite normal phosphorylation of serum response factor and Elk-1. Finally, coexpression of Rsk-2 in transfected cells results in the activation of the c-fos promoter via the cAMP-responsive element. Thus, we establish a link in the transduction of a specific growth factor signal to changes in gene expression via the phosphorylation of CREB by Rsk-2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have identified a mammalian protein called GIPC (for GAIP interacting protein, C terminus), which has a central PDZ domain and a C-terminal acyl carrier protein (ACP) domain. The PDZ domain of GIPC specifically interacts with RGS-GAIP, a GTPase-activating protein (GAP) for Gαi subunits recently localized on clathrin-coated vesicles. Analysis of deletion mutants indicated that the PDZ domain of GIPC specifically interacts with the C terminus of GAIP (11 amino acids) in the yeast two-hybrid system and glutathione S-transferase (GST)-GIPC pull-down assays, but GIPC does not interact with other members of the RGS (regulators of G protein signaling) family tested. This finding is in keeping with the fact that the C terminus of GAIP is unique and possesses a modified C-terminal PDZ-binding motif (SEA). By immunoblotting of membrane fractions prepared from HeLa cells, we found that there are two pools of GIPC–a soluble or cytosolic pool (70%) and a membrane-associated pool (30%). By immunofluorescence, endogenous and GFP-tagged GIPC show both a diffuse and punctate cytoplasmic distribution in HeLa cells reflecting, respectively, the existence of soluble and membrane-associated pools. By immunoelectron microscopy the membrane pool of GIPC is associated with clusters of vesicles located near the plasma membrane. These data provide direct evidence that the C terminus of a RGS protein is involved in interactions specific for a given RGS protein and implicates GAIP in regulation of additional functions besides its GAP activity. The location of GIPC together with its binding to GAIP suggest that GAIP and GIPC may be components of a G protein-coupled signaling complex involved in the regulation of vesicular trafficking. The presence of an ACP domain suggests a putative function for GIPC in the acylation of vesicle-bound proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein phosphatase 2A (PP2A) is a multimeric enzyme, containing a catalytic subunit complexed with two regulatory subunits. The catalytic subunit PP2A C is encoded by two distinct and unlinked genes, termed Cα and Cβ. The specific function of these two catalytic subunits is unknown. To address the possible redundancy between PP2A and related phosphatases as well as between Cα and Cβ, the Cα subunit gene was deleted by homologous recombination. Homozygous null mutant mice are embryonically lethal, demonstrating that the Cα subunit gene is an essential gene. As PP2A exerts a range of cellular functions including cell cycle regulation and cell fate determination, we were surprised to find that these embryos develop normally until postimplantation, around embryonic day 5.5/6.0. While no Cα protein is expressed, we find comparable expression levels of PP2A C at a time when the embryo is degenerating. Despite a 97% amino acid identity, Cβ cannot completely compensate for the absence of Cα. Degenerated embryos can be recovered even at embryonic day 13.5, indicating that although embryonic tissue is still capable of proliferating, normal differentiation is significantly impaired. While the primary germ layers ectoderm and endoderm are formed, mesoderm is not formed in degenerating embryos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In filamentous fungi, het loci (for heterokaryon incompatibility) are believed to regulate self/nonself-recognition during vegetative growth. As filamentous fungi grow, hyphal fusion occurs within an individual colony to form a network. Hyphal fusion can occur also between different individuals to form a heterokaryon, in which genetically distinct nuclei occupy a common cytoplasm. However, heterokaryotic cells are viable only if the individuals involved have identical alleles at all het loci. One het locus, het-c, has been characterized at the molecular level in Neurospora crassa and encodes a glycine-rich protein. In an effort to understand the role of this locus in filamentous fungi, we chose to study its evolution by analyzing het-c sequence variability in species within Neurospora and related genera. We determined that the het-c locus was polymorphic in a field population of N. crassa with close to equal frequency of each of the three allelic types. Different species and even genera within the Sordariaceae shared het-c polymorphisms, indicating that these polymorphisms originated in an ancestral species. Finally, an analysis of the het-c specificity region shows a high occurrence of nonsynonymous substitution. The persistence of allelic lineages, the nearly equal allelic distribution within populations, and the high frequency of nonsynonymous substitutions in the het-c specificity region suggest that balancing selection has operated to maintain allelic diversity at het-c. Het-c shares this particular evolutionary characteristic of departing from neutrality with other self/nonself-recognition systems such as major histocompatibility complex loci in mammals and the S (self-incompatibility) locus in angiosperms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The last unidentified gene encoding an enzyme involved in ergosterol biosynthesis in Saccharomyces cerevisiae has been cloned. This gene, designated ERG27, encodes the 3-keto sterol reductase, which, in concert with the C-4 sterol methyloxidase (ERG25) and the C-3 sterol dehydrogenase (ERG26), catalyzes the sequential removal of the two methyl groups at the sterol C-4 position. We developed a strategy to isolate a mutant deficient in converting 3-keto to 3-hydroxy-sterols. An ergosterol auxotroph unable to synthesize sterol or grow without sterol supplementation was mutagenized. Colonies were then selected that were nystatin-resistant in the presence of 3-ketoergostadiene and cholesterol. A new ergosterol auxotroph unable to grow on 3-ketosterols without the addition of cholesterol was isolated. The gene (YLR100w) was identified by complementation. Segregants containing the YLR100w disruption failed to grow on various types of 3-keto sterol substrates. Surprisingly, when erg27 was grown on cholesterol- or ergosterol-supplemented media, the endogenous compounds that accumulated were noncyclic sterol intermediates (squalene, squalene epoxide, and squalene dioxide), and there was little or no accumulation of lanosterol or 3-ketosterols. Feeding experiments in which erg27 strains were supplemented with lanosterol (an upstream intermediate of the C-4 demethylation process) and cholesterol (an end-product sterol) demonstrated accumulation of four types of 3-keto sterols identified by GC/MS and chromatographic properties: 4-methyl-zymosterone, zymosterone, 4-methyl-fecosterone, and ergosta-7,24 (28)-dien-3-one. In addition, a fifth intermediate was isolated and identified by 1H NMR as a 4-methyl-24,25-epoxy-cholesta-7-en-3-one. Implications of these results are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crystal structures of cytochrome c oxidase from both bovine and Paracoccus denitrificans reveal two putative proton input channels that connect the heme-copper center, where dioxygen is reduced, to the internal aqueous phase. In this work we have examined the role of these two channels, looking at the effects of site-directed mutations of residues observed in each of the channels of the cytochrome c oxidase from Rhodobacter sphaeroides. A photoelectric technique was used to monitor the time-resolved electrogenic proton transfer steps associated with the photo-induced reduction of the ferryl-oxo form of heme a3 (Fe4+ = O2−) to the oxidized form (Fe3+OH−). This redox step requires the delivery of a “chemical” H+ to protonate the reduced oxygen atom and is also coupled to proton pumping. It is found that mutations in the K channel (K362M and T359A) have virtually no effect on the ferryl-oxo-to-oxidized (F-to-Ox) transition, although steady-state turnover is severely limited. In contrast, electrogenic proton transfer at this step is strongly suppressed by mutations in the D channel. The results strongly suggest that the functional roles of the two channels are not the separate delivery of chemical or pumped protons, as proposed recently [Iwata, S., Ostermeier, C., Ludwig, B. & Michel, H. (1995) Nature (London) 376, 660–669]. The D channel is likely to be involved in the uptake of both “chemical” and “pumped” protons in the F-to-Ox transition, whereas the K channel is probably idle at this partial reaction and is likely to be used for loading the enzyme with protons at some earlier steps of the catalytic cycle. This conclusion agrees with different redox states of heme a3 in the K362M and E286Q mutants under aerobic steady-state turnover conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Endocytosis of the Flaviviridae viruses, hepatitis C virus, GB virus C/hepatitis G virus, and bovine viral diarrheal virus (BVDV) was shown to be mediated by low density lipoprotein (LDL) receptors on cultured cells by several lines of evidence: by the demonstration that endocytosis of these virus correlated with LDL receptor activity, by complete inhibition of detectable endocytosis by anti-LDL receptor antibody, by inhibition with anti-apolipoprotein E and -apolipoprotein B antibodies, by chemical methods abrogating lipoprotein/LDL receptor interactions, and by inhibition with the endocytosis inhibitor phenylarsine oxide. Confirmatory evidence was provided by the lack of detectable LDL receptor on cells known to be resistant to BVDV infection. Endocytosis via the LDL receptor was shown to be mediated by complexing of the virus to very low density lipoprotein or LDL but not high density lipoprotein. Studies using LDL receptor-deficient cells or a cytolytic BVDV system indicated that the LDL receptor may be the main but not exclusive means of cell entry of these viruses. Studies on other types of viruses indicated that this mechanism may not be exclusive to Flaviviridae but may be used by viruses that associate with lipoprotein in the blood. These findings provide evidence that the family of LDL receptors may serve as viral receptors.