18 resultados para Chaotic attractor
em National Center for Biotechnology Information - NCBI
Resumo:
Mathematical analysis of the subthreshold oscillatory properties of inferior olivary neurons in vitro indicates that the oscillation is nonlinear and supports low dimensional chaotic dynamics. This property leads to the generation of complex functional states that can be attained rapidly via phase coherence that conform to the category of “generalized synchronization.” Functionally, this translates into neuronal ensemble properties that can support maximum functional permissiveness and that rapidly can transform into robustly determined multicellular coherence.
Resumo:
The brain can hold the eyes still because it stores a memory of eye position. The brain’s memory of horizontal eye position appears to be represented by persistent neural activity in a network known as the neural integrator, which is localized in the brainstem and cerebellum. Existing experimental data are reinterpreted as evidence for an “attractor hypothesis” that the persistent patterns of activity observed in this network form an attractive line of fixed points in its state space. Line attractor dynamics can be produced in linear or nonlinear neural networks by learning mechanisms that precisely tune positive feedback.
Resumo:
Dispersive wave turbulence is studied numerically for a class of one-dimensional nonlinear wave equations. Both deterministic and random (white noise in time) forcings are studied. Four distinct stable spectra are observed—the direct and inverse cascades of weak turbulence (WT) theory, thermal equilibrium, and a fourth spectrum (MMT; Majda, McLaughlin, Tabak). Each spectrum can describe long-time behavior, and each can be only metastable (with quite diverse lifetimes)—depending on details of nonlinearity, forcing, and dissipation. Cases of a long-live MMT transient state dcaying to a state with WT spectra, and vice-versa, are displayed. In the case of freely decaying turbulence, without forcing, both cascades of weak turbulence are observed. These WT states constitute the clearest and most striking numerical observations of WT spectra to date—over four decades of energy, and three decades of spatial, scales. Numerical experiments that study details of the composition, coexistence, and transition between spectra are then discussed, including: (i) for deterministic forcing, sharp distinctions between focusing and defocusing nonlinearities, including the role of long wavelength instabilities, localized coherent structures, and chaotic behavior; (ii) the role of energy growth in time to monitor the selection of MMT or WT spectra; (iii) a second manifestation of the MMT spectrum as it describes a self-similar evolution of the wave, without temporal averaging; (iv) coherent structures and the evolution of the direct and inverse cascades; and (v) nonlocality (in k-space) in the transferral process.
Resumo:
To “control” a system is to make it behave (hopefully) according to our “wishes,” in a way compatible with safety and ethics, at the least possible cost. The systems considered here are distributed—i.e., governed (modeled) by partial differential equations (PDEs) of evolution. Our “wish” is to drive the system in a given time, by an adequate choice of the controls, from a given initial state to a final given state, which is the target. If this can be achieved (respectively, if we can reach any “neighborhood” of the target) the system, with the controls at our disposal, is exactly (respectively, approximately) controllable. A very general (and fuzzy) idea is that the more a system is “unstable” (chaotic, turbulent) the “simplest,” or the “cheapest,” it is to achieve exact or approximate controllability. When the PDEs are the Navier–Stokes equations, it leads to conjectures, which are presented and explained. Recent results, reported in this expository paper, essentially prove the conjectures in two space dimensions. In three space dimensions, a large number of new questions arise, some new results support (without proving) the conjectures, such as generic controllability and cases of decrease of cost of control when the instability increases. Short comments are made on models arising in climatology, thermoelasticity, non-Newtonian fluids, and molecular chemistry. The Introduction of the paper and the first part of all sections are not technical. Many open questions are mentioned in the text.
Resumo:
In the most extensive analysis of body size in marine invertebrates to date, we show that the size–frequency distributions of northeastern Pacific bivalves at the provincial level are surprisingly invariant in modal and median size as well as size range, despite a 4-fold change in species richness from the tropics to the Arctic. The modal sizes and shapes of these size–frequency distributions are consistent with the predictions of an energetic model previously applied to terrestrial mammals and birds. However, analyses of the Miocene–Recent history of body sizes within 82 molluscan genera show little support for the expectation that the modal size is an evolutionary attractor over geological time.
Resumo:
The Dali Domain Dictionary (http://www.ebi.ac.uk/dali/domain) is a numerical taxonomy of all known structures in the Protein Data Bank (PDB). The taxonomy is derived fully automatically from measurements of structural, functional and sequence similarities. Here, we report the extension of the classification to match the traditional four hierarchical levels corresponding to: (i) supersecondary structural motifs (attractors in fold space), (ii) the topology of globular domains (fold types), (iii) remote homologues (functional families) and (iv) homologues with sequence identity above 25% (sequence families). The computational definitions of attractors and functional families are new. In September 2000, the Dali classification contained 10 531 PDB entries comprising 17 101 chains, which were partitioned into five attractor regions, 1375 fold types, 2582 functional families and 3724 domain sequence families. Sequence families were further associated with 99 582 unique homologous sequences in the HSSP database, which increases the number of effectively known structures several-fold. The resulting database contains the description of protein domain architecture, the definition of structural neighbours around each known structure, the definition of structurally conserved cores and a comprehensive library of explicit multiple alignments of distantly related protein families.
Resumo:
The distinction between physiological (apoptotic) and pathological (necrotic) cell deaths reflects mechanistic differences in cellular disintegration and is of functional significance with respect to the outcomes that are triggered by the cell corpses. Mechanistically, apoptotic cells die via an active and ordered pathway; necrotic deaths, conversely, are chaotic and passive. Macrophages and other phagocytic cells recognize and engulf these dead cells. This clearance is believed to reveal an innate immunity, associated with inflammation in cases of pathological but not physiological cell deaths. Using objective and quantitative measures to assess these processes, we find that macrophages bind and engulf native apoptotic and necrotic cells to similar extents and with similar kinetics. However, recognition of these two classes of dying cells occurs via distinct and noncompeting mechanisms. Phosphatidylserine, which is externalized on both apoptotic and necrotic cells, is not a specific ligand for the recognition of either one. The distinct modes of recognition for these different corpses are linked to opposing responses from engulfing macrophages. Necrotic cells, when recognized, enhance proinflammatory responses of activated macrophages, although they are not sufficient to trigger macrophage activation. In marked contrast, apoptotic cells profoundly inhibit phlogistic macrophage responses; this represents a cell-associated, dominant-acting anti-inflammatory signaling activity acquired posttranslationally during the process of physiological cell death.
Resumo:
How a reacting system climbs through a transition state during the course of a reaction has been an intriguing subject for decades. Here we present and quantify a technique to identify and characterize local invariances about the transition state of an N-particle Hamiltonian system, using Lie canonical perturbation theory combined with microcanonical molecular dynamics simulation. We show that at least three distinct energy regimes of dynamical behavior occur in the region of the transition state, distinguished by the extent of their local dynamical invariance and regularity. Isomerization of a six-atom Lennard–Jones cluster illustrates this: up to energies high enough to make the system manifestly chaotic, approximate invariants of motion associated with a reaction coordinate in phase space imply a many-body dividing hypersurface in phase space that is free of recrossings even in a sea of chaos. The method makes it possible to visualize the stable and unstable invariant manifolds leading to and from the transition state, i.e., the reaction path in phase space, and how this regularity turns to chaos with increasing total energy of the system. This, in turn, illuminates a new type of phase space bottleneck in the region of a transition state that emerges as the total energy and mode coupling increase, which keeps a reacting system increasingly trapped in that region.
Resumo:
We argue that given even an infinitely long data sequence, it is impossible (with any test statistic) to distinguish perfectly between linear and nonlinear processes (including slightly noisy chaotic processes). Our approach is to consider the set of moving-average (linear) processes and study its closure under a suitable metric. We give the precise characterization of this closure, which is unexpectedly large, containing nonergodic processes, which are Poisson sums of independent and identically distributed copies of a stationary process. Proofs of these results will appear elsewhere.
Resumo:
Electrogram recordings of ventricular fibrillation appear complex and possibly chaotic. However, sequences of beat-to-beat intervals obtained from these recordings are generally short, making it difficult to explicitly demonstrate nonlinear dynamics. Motivated by the work of Sugihara on atmospheric dynamics and the Durbin-Watson test for nonlinearity, we introduce a new statistical test that recovers significant dynamical patterns from smoothed lag plots. This test is used to show highly significant nonlinear dynamics in a stable canine model of ventricular fibrillation.
Resumo:
Earlier we have shown that oscillations with a long period ("supercycles") may arise in two-locus systems experiencing cyclical selection with a short period. However, this mode of complex limiting behavior appeared to be possible for narrow ranges of parameters. Here we demonstrate that a multilocus system subjected to stabilizing selection with cyclically moving optimum can generate ubiquitous complex limiting behavior including supercycles, T-cycles, and chaotic-like phenomena. This mode of multilocus dynamics far exceeds the potential attainable under ordinary selection models resulting in simple behavior. It may represent a novel evolutionary mechanism increasing genetic diversity over long-term time periods.
Resumo:
We summarize studies of earthquake fault models that give rise to slip complexities like those in natural earthquakes. For models of smooth faults between elastically deformable continua, it is critical that the friction laws involve a characteristic distance for slip weakening or evolution of surface state. That results in a finite nucleation size, or coherent slip patch size, h*. Models of smooth faults, using numerical cell size properly small compared to h*, show periodic response or complex and apparently chaotic histories of large events but have not been found to show small event complexity like the self-similar (power law) Gutenberg-Richter frequency-size statistics. This conclusion is supported in the present paper by fully inertial elastodynamic modeling of earthquake sequences. In contrast, some models of locally heterogeneous faults with quasi-independent fault segments, represented approximately by simulations with cell size larger than h* so that the model becomes "inherently discrete," do show small event complexity of the Gutenberg-Richter type. Models based on classical friction laws without a weakening length scale or for which the numerical procedure imposes an abrupt strength drop at the onset of slip have h* = 0 and hence always fall into the inherently discrete class. We suggest that the small-event complexity that some such models show will not survive regularization of the constitutive description, by inclusion of an appropriate length scale leading to a finite h*, and a corresponding reduction of numerical grid size.
Resumo:
We summarize recent evidence that models of earthquake faults with dynamically unstable friction laws but no externally imposed heterogeneities can exhibit slip complexity. Two models are described here. The first is a one-dimensional model with velocity-weakening stick-slip friction; the second is a two-dimensional elastodynamic model with slip-weakening friction. Both exhibit small-event complexity and chaotic sequences of large characteristic events. The large events in both models are composed of Heaton pulses. We argue that the key ingredients of these models are reasonably accurate representations of the properties of real faults.
Resumo:
Studies on natural populations and harvesting biological resources have led to the view, commonly held, that (i) populations exhibiting chaotic oscillations run a high risk of extinction; and (ii) a decrease in emigration/exploitation may reduce the risk of extinction. Here we describe a simple ecological model with emigration/depletion that shows behavior in contrast to this. This model displays unusual dynamics of extinction and survival, where populations growing beyond a critical rate can persist within a band of high depletion rates, whereas extinction occurs for lower depletion rates. Though prior to extinction at lower depletion rates the population exhibits chaotic dynamics with large amplitudes of variation and very low minima, at higher depletion rates the population persists at chaos but with reduced variation and increased minima. For still higher values, within the band of persistence, the dynamics show period reversal leading to stability. These results illustrate that chaos does not necessarily lead to population extinction. In addition, the persistence of populations at high depletion rates has important implications in the considerations of strategies for the management of biological resources.
Resumo:
I will discuss several issues related to the acceleration, collimation, and propagation of jets from active galactic nuclei. Hydromagnetic stresses provide the best bet for both accelerating relativistic flows and providing a certain amount of initial collimation. However, there are limits to how much "self-collimation" can be achieved without the help of an external pressurized medium. Moreover, existing models, which postulate highly organized poloidal flux near the base of the flow, are probably unrealistic. Instead, a large fraction of the magnetic energy may reside in highly disorganized "chaotic" fields. Such a field can also accelerate the flow to relativistic speeds, in some cases with greater efficiency than highly organized fields, but at the expense of self-collimation. The observational interpretation of jet physics is still hampered by a dearth of unambiguous diagnostics. Propagating disturbances in flows, such as the oblique shocks that may constitute the kiloparsec-scale "knots" in the M87 jet, may provide a wide range of untapped diagnostics for jet properties.