18 resultados para Cervical traction
em National Center for Biotechnology Information - NCBI
Resumo:
Skeletal formation is a fundamental element of body patterning and is strictly regulated both temporally and spatially by a variety of molecules. Among these, retinoic acid (RA) has been shown to be involved in normal skeletal development. However, its pleiotropic effects have caused difficulty in identifying its crucial target cells and molecular mechanisms for each effect. Development of cartilage primordia is an important process in defining the skeletal structures. To address the role of RA in skeletal formation, we have generated mice expressing a dominant-negative retinoic acid receptor (RAR) in chondrogenic cells by using the type II collagen α1 promoter, and we have analyzed their phenotypes. These mice exhibited small cartilage primordia during development and retarded skeletal formation in both embryonic and postnatal periods. They also showed selective degeneration in their cervical vertebrae combined with homeotic transformations, but not in their extremities. The cervical phenotypes are reminiscent of phenotypes involving homeobox genes. We found that the expression of Hoxa-4 was indeed reduced in the cartilage primordia of cervical vertebrae of embryonic day 12.5 embryos. These observations demonstrate that endogenous RA acts directly on chondrogenic cells to promote skeletal growth in both embryonic and growing periods, and it regulates the proper formation of cervical vertebrae. Furthermore, RA apparently specifies the identities of the cervical vertebrae through the regulation of homeobox genes in the chondrogenic cells. Great similarities of the phenotypes between our mice and reported RAR knockout mice revealed that chondrogenic cells are a principal RA target during complex cascades of skeletal development.
Resumo:
We have measured the traction forces generated by fibroblasts using a novel micromachined device that is capable of determining the subcellular forces generated by individual adhesive contacts. The front of migrating fibroblasts produced intermittent rearward forces whereas the tail produced larger forward directed forces. None of the forces were steady; they all had periodic fluctuations. The transition between forward and rearward traction forces occurred at the nucleus, not at the rear of the cell or the border between the endoplasm and the ectoplasm. We propose that the coupling of lamella extensions to fluctuating rearward tractions in front of the nuclear region move the front of a fibroblast forward, while force-facilitated release of rear adhesive contacts and anterior-directed tractions allow the region behind the nucleus to advance.
Resumo:
Carcinoma of the cervix is one of the most common malignancies. Papanicolaou (Pap) smear tests have reduced mortality by up to 70%. Nevertheless their interpretation is notoriously difficult with high false-negative rates and frequently fatal consequences. We have addressed this problem by using affinity-purified antibodies against human proteins that regulate DNA replication, namely Cdc6 and Mcm5. These antibodies were applied to sections and smears of normal and diseased uterine cervix by using immunoperoxidase or immunofluorescence to detect abnormal precursor malignant cells. Antibodies against Cdc6 and Mcm5 stain abnormal cells in cervical smears and sections with remarkably high specificity and sensitivity. Proliferation markers Ki-67 and proliferating cell nuclear antigen are much less effective. The majority of abnormal precursor malignant cells are stained in both low-grade and high-grade squamous intraepithelial lesions. Immunostaining of cervical smears can be combined with the conventional Pap stain so that all the morphological information from the conventional method is conserved. Thus antibodies against proteins that regulate DNA replication can reduce the high false-negative rate of the Pap smear test and may facilitate mass automated screening.
Resumo:
Forces generated by goldfish keratocytes and Swiss 3T3 fibroblasts have been measured with nanonewton precision and submicrometer spatial resolution. Differential interference contrast microscopy was used to visualize deformations produced by traction forces in elastic substrata, and interference reflection microscopy revealed sites of cell-substratum adhesions. Force ranged from a few nanonewtons at submicrometer spots under the lamellipodium to several hundred nanonewtons under the cell body. As cells moved forward, centripetal forces were applied by lamellipodia at sites that remained stationary on the substratum. Force increased and abruptly became lateral at the boundary of the lamellipodium and the cell body. When the cell retracted at its posterior margin, cell-substratum contact area decreased more rapidly than force, so that stress (force divided by area) increased as the cell pulled away. An increase in lateral force was associated with widening of the cell body. These mechanical data suggest an integrated, two-phase mechanism of cell motility: (1) low forces in the lamellipodium are applied in the direction of cortical flow and cause the cell body to be pulled forward; and (2) a component of force at the flanks pulls the rear margins forward toward the advancing cell body, whereas a large lateral component contributes to detachment of adhesions without greatly perturbing forward movement.
Resumo:
In over 90% of cervical cancers and cancer-derived cell lines, the p53 tumor suppressor pathway is disrupted by human papillomavirus (HPV). The HPV E6 protein promotes the degradation of p53 and thus inhibits the stabilization and activation of p53 that would normally occur in response to HPV E7 oncogene expression. Restoration of p53 function in these cells by blocking this pathway should promote a selective therapeutic affect. Here we show that treatment with the small molecule nuclear export inhibitor, leptomycin B, and actinomycin D leads to the accumulation of transcriptionally active p53 in the nucleus of HeLa, CaSki, and SiHa cells. Northern blot analyses showed that both actinomycin D and leptomycin B reduced the amount of HPV E6-E7 mRNA whereas combined treatment with the drugs showed almost complete disappearance of the viral mRNA. The combined treatment activated p53-dependant transcription, and increases in both p21WAF1/CIP1 and Hdm2 mRNA were seen. The combined treatment resulted in apoptotic death in the cells, as evidenced by nuclear fragmentation and PARP-cleavage indicative of caspase 3 activity. These effects were greatly reduced by expressing a dominant negative p53 protein. The present study shows that small molecules can reactivate p53 in cervical carcinoma cells, and this reactivation is associated with an extensive biological response, including the induction of the apoptotic death of the cells.
Resumo:
Expression of the bovine papillomavirus E2 regulatory protein in human cervical carcinoma cell lines repressed expression of the resident human papillomavirus E6 and E7 oncogenes and within a few days caused essentially all of the cells to synchronously display numerous phenotypic markers characteristic of cells undergoing replicative senescence. This process was accompanied by marked but in some cases transient alterations in the expression of cell cycle regulatory proteins and by decreased telomerase activity. We propose that the human papillomavirus E6 and E7 proteins actively prevent senescence from occurring in cervical carcinoma cells, and that once viral oncogene expression is extinguished, the senescence program is rapidly executed. Activation of endogenous senescence pathways in cancer cells may represent an alternative approach to treat human cancers.
Resumo:
Fourier-transform IR (FT-IR) spectra of pelleted exfoliated cervical cells from patients with cervical cancer or dysplasia differ from those from normal women. To study the origin of these spectral changes, we obtained the FT-IR spectra of individual cervical cells from normal, dysplastic, and malignant cervical samples. Ninety five percent of normal superficial and intermediate cells displayed two distinct spectral patterns designated A and B, and 5% displayed an intermediate pattern, suggesting extensive structural heterogeneity among these cells. Parabasal and endocervical cells showed pattern B spectra. The spectra of malignant, dysplastic, and other abnormal cells also were characterized. Analysis of FT-IR spectra of over 2,000 individual cells from 10 normal females, 7 females with dysplasia, and 5 females with squamous cell carcinoma revealed that the spectra of normal-appearing intermediate and superficial cells of the cervix from women with either dysplasia or cancer differed from those of normal women. Chemometric and classical spectroscopic analysis showed a continuum of changes paralleling the transition from normalcy to malignancy. These findings suggest that (i) the structural changes underlying the spectroscopic changes are involved in or are a product of cervical carcinogenesis and (ii) the neoplastic process may be more extensive than currently recognized with morphological criteria. This approach may be useful for the structural study of neoplasia and also may be of help in the diagnosis or classification of cervical disorders.
Resumo:
Detection of loss of heterozygosity (LOH) by comparison of normal and tumor genotypes using PCR-based microsatellite loci provides considerable advantages over traditional Southern blotting-based approaches. However, current methodologies are limited by several factors, including the numbers of loci that can be evaluated for LOH in a single experiment, the discrimination of true alleles versus "stutter bands," and the use of radionucleotides in detecting PCR products. Here we describe methods for high throughput simultaneous assessment of LOH at multiple loci in human tumors; these methods rely on the detection of amplified microsatellite loci by fluorescence-based DNA sequencing technology. Data generated by this approach are processed by several computer software programs that enable the automated linear quantitation and calculation of allelic ratios, allowing rapid ascertainment of LOH. As a test of this approach, genotypes at a series of loci on chromosome 4 were determined for 58 carcinomas of the uterine cervix. The results underscore the efficacy, sensitivity, and remarkable reproducibility of this approach to LOH detection and provide subchromosomal localization of two regions of chromosome 4 commonly altered in cervical tumors.