2 resultados para Cerebral Hemorrhage

em National Center for Biotechnology Information - NCBI


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mammalian anx7 gene codes for a Ca2+-activated GTPase, which supports Ca2+/GTP-dependent secretion events and Ca2+ channel activities in vitro and in vivo. To test whether anx7 might be involved in Ca2+ signaling in secreting pancreatic β cells, we knocked out the anx7 gene in the mouse and tested the insulin-secretory properties of the β cells. The nullizygous anx7 (−/−) phenotype is lethal at embryonic day 10 because of cerebral hemorrhage. However, the heterozygous anx7 (+/−) mouse, although expressing only low levels of ANX7 protein, is viable and fertile. The anx7 (+/−) phenotype is associated with a substantial defect in insulin secretion, although the insulin content of the islets, is 8- to 10-fold higher in the mutants than in the normal littermate control. We infer from electrophysiological studies that both glucose-stimulated secretion and voltage-dependent Ca2+ channel functions are normal. However, electrooptical recordings indicate that the (+/−) mutation has caused a change in the ability of inositol 1,4,5-trisphosphate (IP3)-generating agonists to release intracellular calcium. The principle molecular consequence of lower anx7 expression is a profound reduction in IP3 receptor expression and function in pancreatic islets. The profound increase in islets, β cell number, and size may be a means of compensating for less efficient insulin secretion by individual defective pancreatic β cells. This is a direct demonstration of a connection between glucose-activated insulin secretion and Ca2+ signaling through IP3-sensitive Ca2+ stores.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cerebrovascular amyloid beta-protein (Abeta) deposition is a pathological feature of several related disorders including Alzheimer disease and hereditary cerebral hemorrhage with amyloidosis Dutch-type (HCHWA-D). HCHWA-D is caused by a point mutation in the gene that encodes the Abeta precursor and results in a Glu --> Gln substitution at position 22 of Abeta. In comparison to Alzheimer disease, the cerebrovascular Abeta deposition in HCHWA-D is generally more severe, often resulting in intracerebral hemorrhage when patients reach 50 years of age. We recently reported that Abeta(1-42), but not the shorter Abeta(1-40) induces pathologic responses in cultured human leptomeningeal smooth muscle cells including cellular degeneration that is accompanied by a marked increase in the levels of cellular Abeta precursor and soluble Abeta peptide. In the present study, we show that the HCHWA-D mutation converts the normally nonpathologic Abeta(1-40) into a highly pathologic form of the peptide for cultured human leptomeningeal smooth muscle cells. These findings suggest that these altered functional properties of HCHWA-D mutated Abeta may contribute to the early and often severe cerebrovascular pathology that is the hallmark of this disorder.