3 resultados para Cepas CagA
em National Center for Biotechnology Information - NCBI
Resumo:
Helicobacter pylori, present in half of the world’s population, is a very successful pathogen. It can survive for decades in the human stomach with few obvious consequences to the host. However, it is also the cause of gastric diseases ranging from gastritis to ulcers to gastric cancer and has been classified a type 1 carcinogen by the World Health Organization. We have previously shown that phosphorylation of a 145-kDa protein and activation of signal transduction pathways are associated with the attachment of H. pylori to gastric cells. Here we identify the 145-kDa protein as the H. pylori CagA protein. We also show that CagA is necessary to induce a growth-factor-like phenotype (hummingbird) in host gastric cells similar to that induced by hepatocyte growth factor (HGF). Additionally, we identify a second cellular phenotype induced after attachment by H. pylori, which we call SFA (stress fiber associated). SFA is CagA independent and is produced by type I and type II H. pylori.
Resumo:
Infection with Helicobacter pylori is associated with different human gastric diseases. Biochemical studies, in vitro adherence assays, and in vivo animal models revealed that epithelial attachment of H. pylori can be mediated by the blood-group antigen-binding adhesin (BabA) targeting human Lewisb surface epitopes. Studies with transgenic mice expressing the Lewisb epitope have shown that such attachment can alter disease outcome. In the current study, the presence of the babA2 gene encoding the adhesin was investigated in clinical isolates from a German population by using PCR and reverse transcription–PCR. A positive genotype was correlated to allelic variations in the genes encoding VacA and CagA and also to the prevalence of duodenal ulcer, distal gastric adenocarcinoma, mucosa-associated lymphoid tissue lymphoma, and antral gastritis. The presence of babA2 was significantly associated with duodenal ulcer (P = 0.0002) and adenocarcinoma (P = 0.033). In contrast, type 1 strains (vacAs1- and cagA-positive) were associated with only duodenal ulcer (P = 0.004) but not adenocarcinoma (P = 0.235). Genotype presence of babA2, vacAs1, and cagA (“triple-positive” strains) showed a highly significant correlation to the prevalence of ulcer (P = 0.000002) and adenocarcinoma (P = 0.014) and discriminated significantly better between disease outcome than did the current type 1 classification. These results indicate that the babA2 gene is of high clinical relevance and would be a useful marker to identify patients who are at higher risk for specific H. pylori-related diseases.
Resumo:
cagA, a gene that codes for an immunodominant antigen, is present only in Helicobacter pylori strains that are associated with severe forms of gastroduodenal disease (type I strains). We found that the genetic locus that contains cagA (cag) is part of a 40-kb DNA insertion that likely was acquired horizontally and integrated into the chromosomal glutamate racemase gene. This pathogenicity island is flanked by direct repeats of 31 bp. In some strains, cag is split into a right segment (cagI) and a left segment (cagII) by a novel insertion sequence (IS605). In a minority of H. pylori strains, cagI and cagII are separated by an intervening chromosomal sequence. Nucleotide sequencing of the 23,508 base pairs that form the cagI region and the extreme 3′ end of the cagII region reveals the presence of 19 ORFs that code for proteins predicted to be mostly membrane associated with one gene (cagE), which is similar to the toxin-secretion gene of Bordetella pertussis, ptlC, and the transport systems required for plasmid transfer, including the virB4 gene of Agrobacterium tumefaciens. Transposon inactivation of several of the cagI genes abolishes induction of IL-8 expression in gastric epithelial cell lines. Thus, we believe the cag region may encode a novel H. pylori secretion system for the export of virulence determinants.