46 resultados para Central nervous system neoplasms
em National Center for Biotechnology Information - NCBI
Resumo:
The nontoxic proteolytic C fragment of tetanus toxin (TTC peptide) has the same ability to bind nerve cells and be retrogradely transported through a synapse as the native toxin. We have investigated its potential use as an in vivo neurotropic carrier. In this work we show that a hybrid protein encoded by the lacZ–TTC gene fusion retains the biological functions of both proteins in vivo—i.e., retrograde transynaptic transport of the TTC fragment and β-galactosidase enzymatic activity. After intramuscular injection, enzymatic activity could be detected in motoneurons and connected neurons of the brainstem areas. This strategy could be used to deliver a biological activity to neurons from the periphery to the central nervous system. Such a hybrid protein could also be used to map synaptic connections between neural cells.
Resumo:
Mice deficient for plasminogen exhibit a variety of pathologies, all of which examined to date are reversed when the animals are also made fibrin(ogen) deficient. These results suggested that the predominant, and perhaps exclusive, physiological role of plasminogen is clearance of fibrin. Plasminogen-deficient mice also display resistance to excitotoxin-induced neurodegeneration, in contrast with wild-type mice, which are sensitive. Based on the genetic interaction between plasminogen and fibrinogen, we investigated whether resistance to neuronal cell death in the plasminogen-deficient mice is dependent on fibrin(ogen). Unexpectedly, mice lacking both plasminogen and fibrinogen are resistant to neurodegeneration to levels comparable to plasminogen-deficient mice. Therefore, plasmin acts on substrates other than fibrin during experimental neuronal degeneration, and may function similarly in other pathological settings in the central nervous system.
Resumo:
In this study we investigate the mRNA expression of inhibitory factor κBα (IκBα) in cells of the rat brain induced by an intraperitoneal (i.p.) injection of lipopolysaccharide (LPS). IκB controls the activity of nuclear factor κB, which regulates the transcription of many immune signal molecules. The detection of IκB induction, therefore, would reveal the extent and the cellular location of brain-derived immune molecules in response to peripheral immune challenges. Low levels of IκBα mRNA were found in the large blood vessels and in circumventricular organs (CVOs) of saline-injected control animals. After an i.p. LPS injection (2.5 mg/kg), dramatic induction of IκBα mRNA occurred in four spatio-temporal patterns. Induced signals were first detected at 0.5 hr in the lumen of large blood vessels and in blood vessels of the choroid plexus and CVOs. Second, at 1–2 hr, labeling dramatically increased in the CVOs and choroid plexus and spread to small vascular and glial cells throughout the entire brain; these responses peaked at 2 hr and declined thereafter. Third, cells of the meninges became activated at 2 hr and persisted until 12 hr after the LPS injection. Finally, only at 12 hr, induced signals were present in ventricular ependyma. Thus, IκBα mRNA is induced in brain after peripheral LPS injection, beginning in cells lining the blood side of the blood–brain barrier and progressing to cells inside brain. The spatiotemporal patterns suggest that cells of the blood–brain barrier synthesize immune signal molecules to activate cells inside the central nervous system in response to peripheral LPS. The cerebrospinal fluid appears to be a conduit for these signal molecules.
Resumo:
The function of dendritic spines, postsynaptic sites of excitatory input in the mammalian central nervous system (CNS), is still not well understood. Although changes in spine morphology may mediate synaptic plasticity, the extent of basal spine motility and its regulation and function remains controversial. We investigated spine motility in three principal neurons of the mouse CNS: cerebellar Purkinje cells, and cortical and hippocampal pyramidal neurons. Motility was assayed with time-lapse imaging by using two-photon microscopy of green fluorescent protein-labeled neurons in acute and cultured slices. In all three cell types, dendritic protrusions (filopodia and spines) were highly dynamic, exhibiting a diversity of morphological rearrangements over short (<1-min) time courses. The incidence of spine motility declined during postnatal maturation, but dynamic changes were still apparent in many spines in late-postnatal neurons. Although blockade or induction of neuronal activity did not affect spine motility, disruption of actin polymerization did. We hypothesize that this basal motility of dendritic protrusions is intrinsic to the neuron and underlies the heightened plasticity found in developing CNS.
Resumo:
Mice devoid of PrPC (Prnpo/o) are resistant to scrapie and do not allow propagation of the infectious agent (prion). PrPC-expressing neuroectodermal tissue grafted into Prnpo/o brains but not the surrounding tissue consistently exhibits scrapie-specific pathology and allows prion replication after inoculation. Scrapie prions administered intraocularly into wild-type mice spread efficiently to the central nervous system within 16 weeks. To determine whether PrPC is required for scrapie spread, we inoculated prions intraocularly into Prnpo/o mice containing a PrP-overexpressing neurograft. Neither encephalopathy nor protease-resistant PrP (PrPSc) were detected in the grafts for up to 66 weeks. Because grafted PrP-expressing cells elicited an immune response that might have interfered with prion spread, we generated Prnpo/o mice immunotolerant to PrP and engrafted them with PrP-producing neuroectodermal tissue. Again, intraocular inoculation did not lead to disease in the PrP-producing graft. These results demonstrate that PrP is necessary for prion spread along neural pathways.
Resumo:
Immune cells invading the central nervous system (CNS) in response to Borna disease virus (BDV) antigens are central to the pathogenesis of Borna disease (BD). We speculate that the response of the resident cells of the brain to infection may be involved in the sensitization and recruitment of these inflammatory cells. To separate the responses of resident cells from those of cells infiltrating from the periphery, we used dexamethasone to inhibit inflammatory reactions in BD. Treatment with dexamethasone prevented the development of clinical signs of BD, and the brains of treated animals showed no neuropathological lesions and a virtual absence of markers of inflammation, cell infiltration, or activation normally seen in the CNS of BDV-infected rats. In contrast, treatment with dexamethasone exacerbated the expression of BDV RNA, which was paralleled by a similarly elevated expression of mRNAs for egr-1, c-fos, and c-jun. Furthermore, dexamethasone failed to inhibit the increase in expression of mRNAs for tumor necrosis factor α, macrophage inflammatory protein 1β, interleukin 6, and mob-1, which occurs in the CNS of animals infected with BDV. Our findings suggest that these genes, encoding transcription factors, chemokines, and proinflammatory cytokines, might be directly activated in CNS resident cells by BDV. This result supports the hypothesis that the initial phase of the inflammatory response to BDV infection in the brain may be dependent upon virus-induced activation of CNS resident cells.
Resumo:
Large-scale genetic screens for mutations affecting early neurogenesis of vertebrates have recently been performed with an aquarium fish, the zebrafish. Later stages of neural morphogenesis have attracted less attention in small fish species, partly because of the lack of molecular markers of developing structures that may facilitate the detection of discrete structural alterations. In this context, we report the characterization of Ol-Prx 3 (Oryzias latipes-Prx 3). This gene was isolated in the course of a large-scale screen for brain cDNAs containing a highly conserved DNA binding region, the homeobox helix-three. Sequence analysis revealed that this gene belongs to another class of homeobox genes, together with a previously isolated mouse ortholog, called OG-12 [Rovescalli, A. C., Asoh, S. & Nirenberg, M. (1996) Proc. Natl. Acad. Sci. USA 93, 10691–10696] and with the human SHOX gene [Rao, E., Weiss, B., Fukami, M., Rump, A., Niesler, B., et al. (1997) Nat. Genet. 16, 54–62], thought to be involved in the short-stature phenotype of Turner syndrome patients. These three genes exhibit a moderate level of identity in the homeobox with the other genes of the paired-related (PRX) gene family. Ol-Prx 3, as well as the PRX genes, are expressed in various cartilaginous structures of head and limbs. These genes might thus be involved in common regulatory pathways during the morphogenesis of these structures. Moreover, this paper reports a complex and monophasic pattern of Ol-Prx 3 expression in the central nervous system, which differs markedly from the patterns reported for the PRX genes, Prx 3 excluded: this gene begins to be expressed in a variety of central nervous system territories at late neurula stage. Strikingly, it remains turned on in some of the derivatives of each territory during the entire life of the fish. We hope this work will thus help identify common features for the PRX 3 family of homeobox genes.
Resumo:
In Drosophila, the chromosomal region 75C1–2 contains at least three genes, reaper (rpr), head involution defective (hid), and grim, that have important functions in the activation of programmed cell death. To better understand how cells are killed by these genes, we have utilized a well defined set of embryonic central nervous system midline cells that normally exhibit a specific pattern of glial cell death. In this study we show that both rpr and hid are expressed in dying midline cells and that the normal pattern of midline cell death requires the function of multiple genes in the 75C1–2 interval. We also utilized the P[UAS]/P[Gal4] system to target expression of rpr and hid to midline cells. Targeted expression of rpr or hid alone was not sufficient to induce ectopic midline cell death. However, expression of both rpr and hid together rapidly induced ectopic midline cell death that resulted in axon scaffold defects characteristic of mutants with abnormal midline cell development. Midline-targeted expression of the baculovirus p35 protein, a caspase inhibitor, blocked both normal and ectopic rpr- and hid-induced cell death. Taken together, our results suggest that rpr and hid are expressed together and cooperate to induce programmed cell death during development of the central nervous system midline.
Resumo:
The nervous system maintains a delicate balance between excitation and inhibition, partly through the complex interplay between voltage-gated sodium and potassium ion channels. Because K+ channel blockade or gene deletion causes hyperexcitability, it is generally assumed that increases in K+ channel gene expression should reduce neuronal network excitability. We have tested this hypothesis by creating a transgenic mouse that expresses a Shaker-type K+ channel gene. Paradoxically, we find that addition of the extra K+ channel gene results in a hyperexcitable rather than a hypoexcitable phenotype. The presence of the transgene leads to a complex deregulation of endogenous Shaker genes in the adult central nervous system as well as an increase in network excitability that includes spontaneous cortical spike and wave discharges and a lower threshold for epileptiform bursting in isolated hippocampal slices. These data suggest that an increase in K+ channel gene dosage leads to dysregulation of normal K+ channel gene expression, and it may underlie a mechanism contributing to the pathogenesis of human aneuploidies such as Down syndrome.
Resumo:
Aβ1–42 is a self-associating peptide whose neurotoxic derivatives are thought to play a role in Alzheimer’s pathogenesis. Neurotoxicity of amyloid β protein (Aβ) has been attributed to its fibrillar forms, but experiments presented here characterize neurotoxins that assemble when fibril formation is inhibited. These neurotoxins comprise small diffusible Aβ oligomers (referred to as ADDLs, for Aβ-derived diffusible ligands), which were found to kill mature neurons in organotypic central nervous system cultures at nanomolar concentrations. At cell surfaces, ADDLs bound to trypsin-sensitive sites and surface-derived tryptic peptides blocked binding and afforded neuroprotection. Germ-line knockout of Fyn, a protein tyrosine kinase linked to apoptosis and elevated in Alzheimer’s disease, also was neuroprotective. Remarkably, neurological dysfunction evoked by ADDLs occurred well in advance of cellular degeneration. Without lag, and despite retention of evoked action potentials, ADDLs inhibited hippocampal long-term potentiation, indicating an immediate impact on signal transduction. We hypothesize that impaired synaptic plasticity and associated memory dysfunction during early stage Alzheimer’s disease and severe cellular degeneration and dementia during end stage could be caused by the biphasic impact of Aβ-derived diffusible ligands acting upon particular neural signal transduction pathways.
Resumo:
The authors report their knowledge about an uncommon case of isolated vasculitis, restricted to the left sylvian artery during an auto-immune Guillain-Barrè syndrome (GBS), sustained by cytomegalovirus (CMV). An acute cardiopulmonary failure requiring a ventilator and vasopressor support manifested, notwithstanding plasma exchanging and immune-modulating therapy. An IgM-enriched formula administration coincided with a rapid amelioration of GBS and vasculitis to a complete recovery the next month after her discharge to a rehabilitation centre.
Resumo:
Although it is believed that little recovery occurs after adult mammalian spinal cord injury, in fact significant spontaneous functional improvement commonly occurs after spinal cord injury in humans. To investigate potential mechanisms underlying spontaneous recovery, lesions of defined components of the corticospinal motor pathway were made in adult rats in the rostral cervical spinal cord or caudal medulla. Following complete lesions of the dorsal corticospinal motor pathway, which contains more than 95% of all corticospinal axons, spontaneous sprouting from the ventral corticospinal tract occurred onto medial motoneuron pools in the cervical spinal cord; this sprouting was paralleled by functional recovery. Combined lesions of both dorsal and ventral corticospinal tract components eliminated sprouting and functional recovery. In addition, functional recovery was also abolished if dorsal corticospinal tract lesions were followed 5 weeks later by ventral corticospinal tract lesions. We found extensive spontaneous structural plasticity as a mechanism correlating with functional recovery in motor systems in the adult central nervous system. Experimental enhancement of spontaneous plasticity may be useful to promote further recovery after adult central nervous system injury.
Resumo:
We reported previously that Go-deficient mice develop severe neurological defects that include hyperalgesia, a generalized tremor, lack of coordination, and a turning syndrome somewhat reminiscent of unilateral lesions of the dopaminergic nigro-striatal pathway. By using frozen coronal sections of serially sectioned brains of normal and Go-deficient mice, we studied the ability of several G protein coupled receptors to promote binding of GTPγS to G proteins and the ability of GTP to promote a shift in the affinity of D2 dopamine receptor for its physiologic agonist dopamine. We found a generalized, but not abolished reduction in agonist-stimulated binding of GTPγS to frozen brain sections, with no significant left–right differences. Unexpectedly, the ability of GTP to regulate the binding affinity of dopamine to D2 receptors (as seen in in situ [35S]sulpiride displacement curves) that was robust in control mice, was absent in Go-deficient mice. The data suggest that most of the effects of the Gi/Go-coupled D2 receptors in the central nervous system are mediated by Go instead of Gi1, Gi2, or Gi3. In agreement with this, the effect of GTP on dopamine binding to D2 receptors in double Gi1 plus Gi2- and Gi1 plus Gi3-deficient mice was essentially unaffected.
Resumo:
We describe a mouse model in which p27Kip1 transgene expression is spatially restricted to the central nervous system neuroepithelium and temporally controlled with doxycycline. Transgene-specific transcripts are detectable within 6 h of doxycycline administration, and maximum nonlethal expression is approached within 12 h. After 18–26 h of transgene expression, the G1 phase of the cell cycle is estimated to increase from 9 to 13 h in the neocortical neuroepithelium, the maximum G1 phase length attainable in this proliferative population in normal mice. Thus our data establish a direct link between p27Kip1 and control of G1 phase length in the mammalian central nervous system and unveil intrinsic mechanisms that constrain the G1 phase length to a putative physiological maximum despite ongoing p27Kip1 transgene expression.
Resumo:
Vaccination with cytokine-producing tumor cells generates potent immune responses against tumors outside the central nervous system (CNS). The CNS, however, is a barrier to allograft and xenograft rejection, and established tumors within the CNS have failed to respond to other forms of systemic immunotherapy. To determine what barriers the "immunologically privileged" CNS would pose to cytokine-assisted tumor vaccines and what cytokines would be most efficacious against tumors within the CNS, we irradiated B16 murine melanoma cells producing murine interleukin 2 (IL-2), IL-3, IL-4, IL-6, gamma-interferon, or granulocyte-macrophage colony stimulating factor (GM-CSF) and used these cells as subcutaneous vaccines against tumors within the brain. Under conditions where untransfected B16 cells had no effect, cells producing IL-3, IL-6, or GM-CSF increased the survival of mice challenged with viable B16 cells in the brain. Vaccination with B16 cells producing IL-4 or gamma-interferon had no effect, and vaccination with B16 cells producing IL-2 decreased survival time. GM-CSF-producing vaccines were also able to increase survival in mice with pre-established tumors. The response elicited by GM-CSF-producing vaccines was found to be specific to tumor type and to be abrogated by depletion of CD8+ cells. Unlike the immunity generated against subcutaneous tumors by GM-CSF, however, the effector responses generated against tumors in the CNS were not dependent on CD4+ cells. These data suggest that cytokine-producing tumor cells are very potent stimulators of immunity against tumors within the CNS, but effector responses in the CNS may be different from those obtained against subcutaneous tumors.