85 resultados para Cell-mediated Immune Response

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Successful neonatal immunization of humans has proven difficult. We have evaluated CpG-containing oligonucleotides as an adjuvant for immunization of young mice (1–14 days old) against hepatitis B virus surface antigen. The protein-alum-CpG formulation, like the DNA vaccine, produced seroconversion of the majority of mice immunized at 3 or 7 days of age, compared with 0–10% with the protein-alum or protein-CpG formulations. All animals, from neonates to adults, immunized with the protein-alum vaccine exhibited strong T helper (Th)2-like responses [predominantly IgG1, weak or absent cytotoxic T lymphocytes (CTL)]. Th2-type responses also were induced in young mice with protein-CpG (in 1-, 3-, and 7-day-old mice) and protein-alum-CpG (in 1- and 3-day-old mice) but immunization carried out at older ages gave mixed Th1/Th2 (Th0) responses. DNA vaccines gave Th0-like responses when administered at 1 and 7 days of age and Th1-like (predominantly IgG2a and CTL) responses with 14-day-old or adult mice. Surprisingly, the protein-alum-CpG formulation was better than the DNA vaccine for percentage of seroconversion, speed of appearance, and peak titer of the antibody response, as well as prevalence and strength of CTL. These findings may have important implications for immunization of human infants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During tumor progression, variants may arise that grow more vigorously. The fate of such variants depends upon the balance between aggressiveness of the variant and the strength of the host immunity. Although enhancing host immunity to cancer is a logical objective, eliminating host factors necessary for aggressive growth of the variant should also be considered. The present study illustrates this concept in the model of a spontaneously occurring, progressively growing variant of an ultraviolet light-induced tumor. The variant produces chemotactic factors that attract host leukocytes and is stimulated in vitro by defined growth factors that can be produced or induced by leukocytes. This study also shows that CD8+ T-cell immunity reduces the rate of tumor growth; however, the variant continues to grow and kills the host. Treatment with a monoclonal anti-granulocyte antibody that counteracts the infiltration of the tumor cell inoculum by non-T-cell leukocytes did not interfere with the CD8+ T-cell-mediated immune response but resulted in rejection of the tumor challenge, indicating a synergy between CD8+ T-cell-mediated immunity and the inhibition of paracrine stimulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A survey of an emerging tuberculosis epidemic among the Yanomami Indians of the Amazonian rain forest provided a unique opportunity to study the impact of tuberculosis on a population isolated from contact with the tubercle bacillus for millennia until the mid-1960s. Within the Yanomami population, an extraordinary high prevalence of active tuberculosis (6.4% of 625 individuals clinically examined) was observed, indicating a high susceptibility to disease, even among bacille Calmette–Guérin-vaccinated individuals. Observational studies on cell-mediated and humoral immune responses of the Yanomami Indians compared with contemporary residents of the region suggest profound differences in immunological responsiveness to Mycobacterium tuberculosis infection. Among the Yanomami, a very high prevalence of tuberculin skin test anergy was found. Of patients with active tuberculosis, 46% had purified protein derivative of tuberculosis reactions <10 mm; similarly 58% of recent bacillus Calmette–Guérin vaccines exhibited skin test reactions <5 mm. The Yanomami also had higher titers of antibodies against M. tuberculosis glycolipid antigens (>70%) than the control subjects comprised of Brazilians of European descent (14%). The antibodies were mostly of the IgM isotype. Among the tuberculosis patients who also produced IgG antibodies, the titers of IgG4 were significantly higher among the Yanomami than in the control population. Although it was not possible to analyze T-cell responses or patterns of lymphokine production in vitro because of the remoteness of the villages from laboratory facilities, the results suggest that the first encounter of the Yanomami Indian population with tuberculosis engenders a diminished cell-mediated immune response and an increased production antibody responses, relative to other populations with extensive previous contact with the pathogen. These findings suggest that tuberculosis may represent a powerful selective pressure on human evolution that over centuries has shaped the nature of human immune responses to infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyaromatic hydrocarbons are ubiquitous environmental chemicals that are important mutagens and carcinogens. The purpose of this study was to determine whether genes within the major histocompatibility complex (MHC) influence their biological activities. Cell-mediated immunity to dimethylbenz(a)anthracene (DMBA) was investigated in congenic strains of mice. On three different backgrounds, H-2k and H-2a haplotype mice developed significantly greater contact-hypersensitivity responses to DMBA than H-2b, H-2d, and H-2s mice. In B10.A(R1) mice, which are Kk and Id, a vigorous contact-hypersensitivity response was present, indicating that the response was governed by class I, rather than class II, MHC genes. C3H/HeN (H-2k) and C3H.SW (H-2s) strains were also compared for the development of skin tumors and the persistence of DMBA–DNA adducts. When subjected to a DMBA initiation, phorbol 12-tetradecanoate 13-acetate (TPA)-promotion skin-tumorigenesis protocol, C3H/HeN mice, (which develop cell-mediated immunity to DMBA) were found to have significantly fewer tumors than C3H.SW mice (a strain that failed to develop a cell-mediated immune response to DMBA). DMBA–DNA adducts were removed more rapidly in C3H/HeN than in C3H.SW mice. The results indicate that genes within the MHC play an important role in several of the biological activities of carcinogenic polyaromatic hydrocarbons. The observations are consistent with the hypothesis that cell-mediated immunity to chemical carcinogens serves to protect individuals by removing mutant cells before they can evolve into clinically apparent neoplasms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immunodeficiency typically appears many years after initial HIV infection. This long, essentially asymptomatic period contributes to the transmission of HIV in human populations. In rare instances, clearance of HIV-1 infection has been observed, particularly in infants. There are also reports of individuals who have been frequently exposed to HIV-1 but remain seronegative for the virus, and it has been hypothesized that these individuals are resistant to infection by HIV-1. However, little is known about the mechanism of immune clearance or protection against HIV-1 in these high-risk individuals because it is difficult to directly demonstrate in vivo protective immunity. Although most of these high-risk individuals show an HIV-1-specific cell-mediated immune response using in vitro assays, their peripheral blood lymphocytes (PBLs) are still susceptible to HIV infection in tissue culture. To study this further in vivo, we have established a humanized SCID mouse infection model whereby T-, B-, and natural killer-cell defective SCID/beige mice that have been reconstituted with normal human PBLs can be infected with HIV-1. When the SCID/beige mice were reconstituted with PBLs from two different multiply exposed HIV-1 seronegative individuals, the mice showed resistance to infection by two strains of HIV-1 (macrophage tropic and T cell tropic), although the same PBLs were easily infected in vitro. Mice reconstituted with PBLs from non-HIV-exposed controls were readily infected. When the same reconstituted mice were depleted of human CD8 T cells, however, they became susceptible to HIV-1 infection, indicating that the in vivo protection required CD8 T cells. This provides clear experimental evidence that some multiply exposed, HIV-1-negative individuals have in vivo protective immunity that is CD8 T cell-dependent. Understanding the mechanism of such protective immunity is critical to the design and testing of effective prophylactic vaccines and immunotherapeutic regimens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To generate a potent cell-mediated immune response, at least two signals are required by T cells. One is engagement of the T-cell receptor with peptide-bearing major histocompatibility complex molecules. The other signal can be delivered by various molecules on the antigen-presenting cell, such as B7-1 (CD80). Many tumor cells escape immune recognition by failing to express these costimulatory molecules. Transfection of the B7 gene into some murine tumor cells allows for immune recognition and subsequent rejection of the parental tumor. We have studied an alternative approach for the introduction of B7-1 onto the surface of tumor cells. This method involves purified glycosyl-phosphatidylinositol (GPI)-anchored proteins which can spontaneously incorporate their lipid tail into cell membranes. We have created and purified a GPI-anchored B7-1 molecule (called GPI-B7) which is able to bind its cognate ligand, CD28, and incorporate itself into tumor cell membranes after a short incubation. Tumor cells that have been reconstituted with GPI-B7 can provide the costimulatory signal needed to stimulate T cells. These findings suggest an approach for the introduction of new proteins onto cell membranes to create an effective tumor vaccine for potential use in human immunotherapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The peptides bound to class II major histocompatibility complex (MHC) molecules extend out both ends of the peptide binding groove. This structural feature provided the opportunity to design multivalent polypeptide chains that cross-link class II MHC molecules through multiple, repetitive MHC binding sites. By using recombinant techniques, polypeptide oligomers were constructed that consist of up to 32 copies of an HLA-DR1-restricted T cell epitope. The epitope HA306–318, derived from influenza virus hemagglutinin, was connected by 12- to 36-aa long spacer sequences. These oligomers were found to cross-link soluble HLA-DR1 molecules efficiently and, upon binding to the MHC molecules of a monocyte line, to trigger signal transduction indicated by the enhanced expression of some cell surface molecules. A particularly strong effect was evident in the T cell response. A hemagglutinin-specific T cell clone recognized these antigens at concentrations up to three to four orders of magnitude lower than that of the peptide or the hemagglutinin protein. Both signal transduction in the monocyte and the proliferative response of the T cell were affected greatly by the length of the oligomer (i.e., the number of repetitive units) and the distance of the epitopes within the oligomer (spacing). Thus, the formation of defined clusters of T cell receptor/MHC/peptide antigen complexes appears to be crucial for triggering the immune response and can be used to enhance the antigenicity of a peptide antigen by oligomerizing the epitope.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

β2-Microglobulin-deficient (β2m−) mice generate a CD4+ major histocompatibility complex class II-restricted cytotoxic T-lymphocyte (CTL) response following infection with lymphocytic choriomeningitis (LCM) virus (LCMV). We have determined the cytotoxic mechanism used by these CD4+ CTLs and have examined the role of this cytotoxic activity in pathogenesis of LCM disease in β2m− mice. Lysis of LCMV-infected target cells by CTLs from β2m− mice is inhibited by addition of soluble Fas-Ig fusion proteins or by pretreatment of the CTLs with the protein synthesis inhibitor emetine. In addition, LCMV-infected cell lines that are resistant to anti-Fas-induced apoptosis are refractory to lysis by these virus-specific CD4+ CTLs. These data indicate that LCMV-specific CD4+ CTLs from β2m− mice use a Fas-dependent lytic mechanism. Intracranial (i.c.) infection of β2m− mice with LCMV results in loss of body weight. Fas-deficient β2m−.lpr mice develop a similar wasting disease following i.c. infection. This suggests that Fas-dependent cytotoxicity is not required for LCMV-induced weight loss. A potential mediator of this chronic wasting disease is tumor necrosis factor (TNF)-α, which is produced by LCMV-specific CD4+ CTLs. In contrast to LCMV-induced weight loss, lethal LCM disease in β2m− mice is dependent on Fas-mediated cytotoxicity. Transfer of immune splenocytes from LCMV-infected β2m− mice into irradiated infected β2m− mice results in death of recipient animals. In contrast, transfer of these splenocytes into irradiated infected β2m−.lpr mice does not cause death. Thus a role for CD4+ T-cell-mediated cytotoxicity in virus-induced immunopathology has now been demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vaccination with cytokine-producing tumor cells generates potent immune responses against tumors outside the central nervous system (CNS). The CNS, however, is a barrier to allograft and xenograft rejection, and established tumors within the CNS have failed to respond to other forms of systemic immunotherapy. To determine what barriers the "immunologically privileged" CNS would pose to cytokine-assisted tumor vaccines and what cytokines would be most efficacious against tumors within the CNS, we irradiated B16 murine melanoma cells producing murine interleukin 2 (IL-2), IL-3, IL-4, IL-6, gamma-interferon, or granulocyte-macrophage colony stimulating factor (GM-CSF) and used these cells as subcutaneous vaccines against tumors within the brain. Under conditions where untransfected B16 cells had no effect, cells producing IL-3, IL-6, or GM-CSF increased the survival of mice challenged with viable B16 cells in the brain. Vaccination with B16 cells producing IL-4 or gamma-interferon had no effect, and vaccination with B16 cells producing IL-2 decreased survival time. GM-CSF-producing vaccines were also able to increase survival in mice with pre-established tumors. The response elicited by GM-CSF-producing vaccines was found to be specific to tumor type and to be abrogated by depletion of CD8+ cells. Unlike the immunity generated against subcutaneous tumors by GM-CSF, however, the effector responses generated against tumors in the CNS were not dependent on CD4+ cells. These data suggest that cytokine-producing tumor cells are very potent stimulators of immunity against tumors within the CNS, but effector responses in the CNS may be different from those obtained against subcutaneous tumors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The p40 subunit of interleukin 12 (IL-12p40) has been known to act as an IL-12 antagonist in vitro. We here describe the immunosuppressive effect of IL-12p40 in vivo. A murine myoblast cell line, C2C12, was transduced with retro-virus vectors carrying the lacZ gene as a marker and the IL-12p40 gene. IL-12p40 secreted from the transfectant inhibited the IL-12-induced interferon gamma (IFN-gamma) production by splenocytes in vitro. Survival of C2C12 transplanted into allogeneic recipients was substantially prolonged when transduced with IL-12p40. Cytokine (IL-2 and IFN-gamma) production and cytotoxic T lymphocyte induction against allogeneic C2C12 were impaired in the recipients transplanted with the IL-12p40 transfectant. Delayed-type hypersensitivity response against C2C12 was also diminished in the IL-12p40 recipients. Furthermore, serum antibodies against beta-galactosidase of the T-helper 1-dependent isotypes (IgG2 and IgG3) were decreased in the IL-12p40 recipients. These results indicate that locally produced IL-12p40 exerts a potent immunosuppressive effect on T-helper 1-mediated immune responses that lead to allograft rejection. Therefore, IL-12p40 gene transduction would be useful for preventing the rejection of allografts and genetically modified own cells that are transduced with potentially antigenic molecules in gene therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recombinant adenoviruses are attractive vehicles for liver-directed gene therapy because of the high efficiency with which they transfer genes to hepatocytes in vivo. First generation recombinant adenoviruses deleted of E1 sequences also express recombinant and early and late viral genes, which lead to development of destructive cellular immune responses. Previous studies indicated that class I major histocompatibility complex (MHC)-restricted cytotoxic T lymphocytes (CTLs) play a major role in eliminating virus-infected cells. The present studies utilize mouse models to evaluate the role of T-helper cells in the primary response to adenovirus-mediated gene transfer to the liver. In vivo ablation of CD4+ cells or interferon gamma (IFN-gamma) was sufficient to prevent the elimination of adenovirus-transduced hepatocytes, despite the induction of a measurable CTL response. Mobilization of an effective TH1 response as measured by in vitro proliferation assays was associated with substantial upregulation of MHC class I expression, an effect that was prevented in IFN-gamma-deficient animals. These results suggest that elimination of virus-infected hepatocytes in a primary exposure to recombinant adenovirus requires both induction of antigen-specific CTLs as well as sensitization of the target cell by TH1-mediated activation of MHC class I expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Fas/Fas ligand (FasL) system participates in regulation of the immune system through the apoptotic process. However, the extent to which abnormalities in this system are involved in the loss of self-tolerance and development of autoimmune disease not associated with Fas/FasL mutations remains unknown. The present study addresses this issue in Fas/FasL-intact, systemic lupus erythematosus (SLE)-prone (NZB × NZW) (NZB/W) F1 mice. While splenic B cells from 2-month-old mice before overt SLE expressed Fas poorly, in vitro stimulation with an agonistic anti-CD40 mAb up-regulated their Fas expression, thus revealing the existence of two populations: one was Fashigh and highly susceptible to anti-Fas mAb-induced apoptosis, and the other was Faslow and apoptosis-resistant. The Faslow cells were included in the CD5+ B cell subpopulation and contained most of the cells that produced IgM anti-DNA antibodies. The isotype of anti-DNA antibodies switches from IgM to IgG in NZB/W F1 mice at ages beginning at about 6 months. These IgG anti-DNA antibodies were produced almost exclusively by a subpopulation of splenic B cells that spontaneously expressed low levels of Fas in vivo and were apoptosis-resistant. The findings indicate that precursor B cells for autoantibody production and presumably autoantibody-secreting cells in these mice are relatively resistant to Fas-mediated apoptosis, a finding supporting the concept that abnormalities of Fas-mediated apoptotic process are involved in the development of autoreactive B cells in Fas/FasL-intact autoimmune disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recognition of self is emerging as a theme for the immune recognition of human cancer. One question is whether the immune system can actively respond to normal tissue autoantigens expressed by cancer cells. A second but related question is whether immune recognition of tissue autoantigens can actually induce tumor rejection. To address these issues, a mouse model was developed to investigate immune responses to a melanocyte differentiation antigen, tyrosinase-related protein 1 (or gp75), which is the product of the brown locus. In mice, immunization with purified syngeneic gp75 or syngeneic cells expressing gp75 failed to elicit antibody or cytotoxic T-cell responses to gp75, even when different immune adjuvants and cytokines were included. However, immunization with altered sources of gp75 antigen, in the form of either syngeneic gp75 expressed in insect cells or human gp75, elicited autoantibodies to gp75. Immunized mice rejected metastatic melanomas and developed patchy depigmentation in their coats. These studies support a model of tolerance maintained to a melanocyte differentiation antigen where tolerance can be broken by presenting sources of altered antigen (e.g., homologous xenogeneic protein or protein expressed in insect cells). Immune responses induced with these sources of altered antigen reacted with various processed forms of native, syngeneic protein and could induce both tumor rejection and autoimmunity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of the antitumor immune response after gene transfer of a foreign major histocompatibility complex class I protein, HLA-B7, was performed. Ten HLA-B7-negative patients with stage IV melanoma were treated in an effort to stimulate local tumor immunity. Plasmid DNA was detected within treated tumor nodules, and RNA encoding recombinant HLA-B7 or HLA-B7 protein was demonstrated in 9 of 10 patients. T cell migration into treated lesions was observed and tumor-infiltrating lymphocyte reactivity was enhanced in six of seven and two of two patients analyzed, respectively. In contrast, the frequency of cytotoxic T lymphocyte against autologous tumor in circulating peripheral blood lymphocytes was not altered significantly, suggesting that peripheral blood lymphocyte reactivity is not indicative of local tumor responsiveness. Local inhibition of tumor growth was detected after gene transfer in two patients, one of whom showed a partial remission. This patient subsequently received treatment with tumor-infiltrating lymphocytes derived from gene-modified tumor, with a complete regression of residual disease. Thus, gene transfer with DNA–liposome complexes encoding an allogeneic major histocompatibility complex protein stimulated local antitumor immune responses that facilitated the generation of effector cells for immunotherapy of cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Double transgenic mice [rat insulin promoter (RIP)-tumor necrosis factor (TNF) and RIP-CD80] whose pancreatic β cells release TNF and bear CD80 all develop an acute early (6 wk) and lethal diabetes mediated by CD8 T cells. The first ultrastructural changes observed in β cells, so far unreported, are focal lesions of endoplasmic reticulum swelling at the points of contact with islet-infiltrating lymphoblasts, followed by cytoplasmic, but not nuclear, apoptosis. Such double transgenic mice were made defective in either the perforin, Fas, or TNF pathways. Remarkably, diabetes was found to be totally independent of perforin and Fas. Mice lacking TNF receptor (TNFR) II had no or late diabetes, but only a minority had severe insulitis. Mice lacking the TNF-lymphotoxin (LTα) locus (whose sole source of TNF are the β cells) all had insulitis comparable to that of nondefective mice, but no diabetes or a retarded and milder form, with lesions suggesting different mechanisms of injury. Because both TNFR II and TNF-LTα mutations have complex effects on the immune system, these data do not formally incriminate membrane TNF as the major T cell mediator of this acute autoimmune diabetes; nevertheless, in the absence of involvement of the perforin or Fas cytotoxic pathways, membrane TNF appears to be the likeliest candidate.