27 resultados para Cell shape

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extracellular matrix (ECM) plays an essential role in the regulation of cell proliferation during angiogenesis. Cell adhesion to ECM is mediated by binding of cell surface integrin receptors, which both activate intracellular signaling cascades and mediate tension-dependent changes in cell shape and cytoskeletal structure. Although the growth control field has focused on early integrin and growth factor signaling events, recent studies suggest that cell shape may play an equally critical role in control of cell cycle progression. Studies were carried out to determine when cell shape exerts its regulatory effects during the cell cycle and to analyze the molecular basis for shape-dependent growth control. The shape of human capillary endothelial cells was controlled by culturing cells on microfabricated substrates containing ECM-coated adhesive islands with defined shape and size on the micrometer scale or on plastic dishes coated with defined ECM molecular coating densities. Cells that were prevented from spreading in medium containing soluble growth factors exhibited normal activation of the mitogen-activated kinase (erk1/erk2) growth signaling pathway. However, in contrast to spread cells, these cells failed to progress through G1 and enter S phase. This shape-dependent block in cell cycle progression correlated with a failure to increase cyclin D1 protein levels, down-regulate the cell cycle inhibitor p27Kip1, and phosphorylate the retinoblastoma protein in late G1. A similar block in cell cycle progression was induced before this same shape-sensitive restriction point by disrupting the actin network using cytochalasin or by inhibiting cytoskeletal tension generation using an inhibitor of actomyosin interactions. In contrast, neither modifications of cell shape, cytoskeletal structure, nor mechanical tension had any effect on S phase entry when added at later times. These findings demonstrate that although early growth factor and integrin signaling events are required for growth, they alone are not sufficient. Subsequent cell cycle progression and, hence, cell proliferation are controlled by tension-dependent changes in cell shape and cytoskeletal structure that act by subjugating the molecular machinery that regulates the G1/S transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diffusion of molecules in brain extracellular space is constrained by two macroscopic parameters, tortuosity factor λ and volume fraction α. Recent studies in brain slices show that when osmolarity is reduced, λ increases while α decreases. In contrast, with increased osmolarity, α increases, but λ attains a plateau. Using homogenization theory and a variety of lattice models, we found that the plateau behavior of λ can be explained if the shape of brain cells changes nonuniformly during the shrinking or swelling induced by osmotic challenge. The nonuniform cellular shrinkage creates residual extracellular space that temporarily traps diffusing molecules, thus impeding the macroscopic diffusion. The paper also discusses the definition of tortuosity and its independence of the measurement frame of reference.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Critical to homeostasis of blood cell production by hematopoietic stem/progenitor (HSC/P) cells is the regulation of HSC/P retention within the bone marrow microenvironment and migration between the bone marrow and the blood. Key extracellular regulatory elements for this process have been defined (cellcell adhesion, growth factors, chemokines), but the mechanism by which HSC/P cells reconcile multiple external signals has not been elucidated. Rac and related small GTPases are candidates for this role and were studied in HSC/P deficient in Rac2, a hematopoietic cell-specific family member. Rac2 appears to be critical for HSC/P adhesion both in vitro and in vivo, whereas a compensatory increase in Cdc42 activation regulates HSC/P migration. This genetic analysis provides physiological evidence of cross-talk between GTPase proteins and suggests that a balance of these two GTPases controls HSC/P adhesion and mobilization in vivo.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The molecular mechanisms that coordinate cell morphogenesis with the cell cycle remain largely unknown. We have investigated this process in fission yeast where changes in polarized cell growth are coupled with cell cycle progression. The orb6 gene is required during interphase to maintain cell polarity and encodes a serine/threonine protein kinase, belonging to the myotonic dystrophy kinase/cot1/warts family. A decrease in Orb6 protein levels leads to loss of polarized cell shape and to mitotic advance, whereas an increase in Orb6 levels maintains polarized growth and delays mitosis by affecting the p34cdc2 mitotic kinase. Thus the Orb6 protein kinase coordinates maintenance of cell polarity during interphase with the onset of mitosis. orb6 interacts genetically with orb2, which encodes the Pak1/Shk1 protein kinase, a component of the Ras1 and Cdc42-dependent signaling pathway. Our results suggest that Orb6 may act downstream of Pak1/Shk1, forming part of a pathway coordinating cell morphogenesis with progression through the cell cycle.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Gas3/PMP22 plays a crucial role in regulating myelin formation and maintenance, and different genetic alterations in gas3/PMP22 are responsible for a set of human peripheral neuropathies. We have previously demonstrated that Gas3/PMP22 could regulate susceptibility to apoptosis in NIH3T3 cells but not in REF 52 cells. In this report we demonstrate that when the apoptotic response triggered by gas3/PMP22 was counteracted by Bcl-2 coexpression, morphological changes were observed. Time-lapse analysis confirmed that Gas3/PMP22 can modulate cell spreading, and this effect was strengthened after inhibition of phosphoinositide 3-kinase. Using the active form of the small GTPase RhoA, we have been able to dissect the different Gas3/PMP22 biological activities. RhoA counteracted the Gas3/PMP22-dependent morphological response but was unable to neutralize the apoptotic response. Treatment of NIH3T3 cells with cytotoxic necrotizing factor 1, which activates endogenous Rho, also counteracted Gas3/PMP22-mediated cell shape and spreading changes. Treatment of REF 52 cells, which are unresponsive to Gas3/PMP22 overexpression, with the C3 exoenzyme, inhibiting Rho activity, renders REF 52 cells responsive to Gas3/PMP22 overexpression for cell shape and spreading changes. Finally, assembly of stress fibers and focal adhesions complexes, in response to lysophosphatidic acid–induced endogenous Rho activation, was impaired in Gas3/PMP22-overexpressing cells. We hypothesize that cell shape and spreading regulated by Gas3/PMP22 through the Rho GTPase might have an important role during Schwann cells differentiation and myelinization.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Toxoplasma gondii is a member of the phylum Apicomplexa, a diverse group of intracellular parasites that share a unique form of gliding motility. Gliding is substrate dependent and occurs without apparent changes in cell shape and in the absence of traditional locomotory organelles. Here, we demonstrate that gliding is characterized by three distinct forms of motility: circular gliding, upright twirling, and helical rotation. Circular gliding commences while the crescent-shaped parasite lies on its right side, from where it moves in a counterclockwise manner at a rate of ∼1.5 μm/s. Twirling occurs when the parasite rights itself vertically, remaining attached to the substrate by its posterior end and spinning clockwise. Helical gliding is similar to twirling except that it occurs while the parasite is positioned horizontally, resulting in forward movement that follows the path of a corkscrew. The parasite begins lying on its left side (where the convex side is defined as dorsal) and initiates a clockwise revolution along the long axis of the crescent-shaped body. Time-lapse video analyses indicated that helical gliding is a biphasic process. During the first 180o of the turn, the parasite moves forward one body length at a rate of ∼1–3 μm/s. In the second phase, the parasite flips onto its left side, in the process undergoing little net forward motion. All three forms of motility were disrupted by inhibitors of actin filaments (cytochalasin D) and myosin ATPase (butanedione monoxime), indicating that they rely on an actinomyosin motor in the parasite. Gliding motility likely provides the force for active penetration of the host cell and may participate in dissemination within the host and thus is of both fundamental and practical interest.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tenascin-C is an adhesion-modulating matrix glycoprotein that has multiple effects on cell behavior. Tenascin-C transcripts are expressed in motile cells and at sites of tissue modeling during development, and alternative splicing generates variants that encode different numbers of fibronectin type III repeats. We have examined the in vivo expression and cell adhesive properties of two full-length recombinant tenascin-C proteins: TN-190, which contains the eight constant fibronectin type III repeats, and TN-ADC, which contains the additional AD2, AD1, and C repeats. In situ hybridization with probes specific for the AD2, AD1, and C repeats shows that these splice variants are expressed at sites of active tissue modeling and fibronectin expression in the developing avian feather bud and sternum. Transcripts incorporating the AD2, AD1, and C repeats are present in embryonic day 10 wing bud but not in embryonic day 10 lung. By using a panel of nine cell lines in attachment assays, we have found that C2C12, G8, and S27 myoblastic cells undergo concentration-dependent adhesion to both variants, organize actin microspikes that contain the actin-bundling protein fascin, and do not assemble focal contacts. On a molar basis, TN-ADC is more active than TN-190 in promoting cell attachment and irregular cell spreading. The addition of either TN-190 or TN-ADC in solution to C2C12, COS-7, or MG-63 cells adherent on fibronectin decreases cell attachment and results in decreased organization of actin microfilament bundles, with formation of cortical membrane ruffles and retention of residual points of substratum contact that contain filamentous actin and fascin. These data establish a biochemical similarity in the processes of cell adhesion to tenascin-C and thrombospondin-1, also an “antiadhesive” matrix component, and also demonstrate that both the adhesive and adhesion-modulating properties of tenascin-C involve similar biochemical events in the cortical cytoskeleton. In addition to these generic properties, TN-ADC is less active in adhesion modulation than TN-190. The coordinated expression of different tenascin-C transcripts during development may, therefore, provide appropriate microenvironments for regulated changes in cell shape, adhesion, and movement.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The number of nuclear pore complexes (NPCs) in individual nuclei of the yeast Saccharomyces cerevisiae was determined by computer-aided reconstruction of entire nuclei from electron micrographs of serially sectioned cells. Nuclei of 32 haploid cells at various points in the cell cycle were modeled and found to contain between 65 and 182 NPCs. Morphological markers, such as cell shape and nuclear shape, were used to determine the cell cycle stage of the cell being examined. NPC number was correlated with cell cycle stage to reveal that the number of NPCs increases steadily, beginning in G1-phase, suggesting that NPC assembly occurs continuously throughout the cell cycle. However, the accumulation of nuclear envelope observed during the cell cycle, indicated by nuclear surface area, is not continuous at the same rate, such that the density of NPCs per unit area of nuclear envelope peaks in apparent S-phase cells. Analysis of the nuclear envelope reconstructions also revealed no preferred NPC-to-NPC distance. However, NPCs were found in large clusters over regions of the nuclear envelope. Interestingly, clusters of NPCs were most pronounced in early mitotic nuclei and were found to be associated with the spindle pole bodies, but the functional significance of this association is unknown.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cell shape plays a role in cell growth, differentiation, and death. Herein, we used the hepatocyte, a normal, highly differentiated cell characterized by a long G1 phase, to understand the mechanisms that link cell shape to growth. First, evidence was provided that the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) cascade is a key transduction pathway controlling the hepatocyte morphology. MEK2/ERK2 activation in early G1 phase did not lead to cell proliferation but induced cell shape spreading and demonstration was provided that this MAPK-dependent spreading was required for reaching G1/S transition and DNA replication. Moreover, epidermal growth factor (EGF) was found to control this morphogenic signal in addition to its mitogenic effect. Thus, blockade of cell spreading by cytochalasin D or PD98059 treatment resulted in inhibition of EGF-dependent DNA replication. Our data led us to assess the first third of G1, is exclusively devoted to the growth factor-dependent morphogenic events, whereas the mitogenic signal occured at only approximately mid-G1 phase. Moreover, these two growth factor-related sequential signaling events involved successively activation of MEK2-ERK2 and then MEK1/2-ERK1/2 isoforms. In addition, we demonstrated that inhibition of extracellular matrix receptor, such as integrin β1 subunit, leads to cell arrest in G1, whereas EGF was found to up-regulated integrin β1 and fibronectin in a MEK-ERK–dependent manner. This process in relation to cytoskeletal reorganization could induce hepatocyte spreading, making them permissive for DNA replication. Our results provide new insight into the mechanisms by which a growth factor can temporally control dual morphogenic and mitogenic signals during the G1 phase.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Vinculin, a major constituent of focal adhesions and zonula adherens junctions, is thought to be involved in linking the microfilaments to areas of cell-substrate and cell-cell contacts. To test the role of vinculin in cell adhesion and motility, we used homologous recombination to generate F9 embryonal carcinoma and embryonic stem cell clones homozygous for a disrupted vinculin gene. When compared to wild-type cells, vinculin-mutant cells displayed a rounder morphology and a reduced ability to adhere and spread on plastic or fibronectin. Decreased adhesion of the mutant cells was associated with a reduction in lamellipodial extensions, as observed by time-lapse video microscopy. The locomotive activities of control F9 and the vinculin-null cells were compared in two assays. Loss of vinculin resulted in a 2.4-fold increase in cell motility. These results demonstrate an important role for vinculin in determining cell shape, adhesion, surface protrusive activity, and cell locomotion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High-resolution video microscopy, image analysis, and computer simulation were used to study the role of the Spitzenkörper (Spk) in apical branching of ramosa-1, a temperature-sensitive mutant of Aspergillus niger. A shift to the restrictive temperature led to a cytoplasmic contraction that destabilized the Spk, causing its disappearance. After a short transition period, new Spk appeared where the two incipient apical branches emerged. Changes in cell shape, growth rate, and Spk position were recorded and transferred to the fungus simulator program to test the hypothesis that the Spk functions as a vesicle supply center (VSC). The simulation faithfully duplicated the elongation of the main hypha and the two apical branches. Elongating hyphae exhibited the growth pattern described by the hyphoid equation. During the transition phase, when no Spk was visible, the growth pattern was nonhyphoid, with consecutive periods of isometric and asymmetric expansion; the apex became enlarged and blunt before the apical branches emerged. Video microscopy images suggested that the branch Spk were formed anew by gradual condensation of vesicle clouds. Simulation exercises where the VSC was split into two new VSCs failed to produce realistic shapes, thus supporting the notion that the branch Spk did not originate by division of the original Spk. The best computer simulation of apical branching morphogenesis included simulations of the ontogeny of branch Spk via condensation of vesicle clouds. This study supports the hypothesis that the Spk plays a major role in hyphal morphogenesis by operating as a VSC—i.e., by regulating the traffic of wall-building vesicles in the manner predicted by the hyphoid model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To determine the role of intracellular Ca2+ in compaction, the first morphogenetic event in embryogenesis, we analyzed preimplantation mouse embryos under several decompacting conditions, including depletion of extracellular Ca2+, blocking of Ca2+ channels, and inhibition of microfilaments, calmodulin, and intracellular Ca2+ release. Those treatments induced decompaction of mouse morulae and simultaneously induced changes in cytosolic free Ca2+ concentration and deregionalization of E-cadherin and fodrin. When morulae were allowed to recompact, the location of both proteins recovered. In contrast, actin did not change its cortical location with compaction nor with decompaction-recompaction. Calmodulin localized in areas opposite to cellcell contacts in eight-cell stage embryos before and after compaction. Inhibition of calmodulin with trifluoperazine induced its delocalization while morulae decompacted. A nonspecific rise of intracellular free Ca2+ provoked by ionomycin did not affect the compacted shape. Moreover, the same decompacting treatments when applied to uncompacted embryos did not produce any change in intracellular Ca2+. Our results demonstrate that in preimplantation mouse embryos experimentally induced stage-specific changes of cell shape are accompanied by changes of intracellular free Ca2+ and redistribution of the cytoskeleton-related proteins E-cadherin, fodrin, and calmodulin. We conclude that intracellular Ca2+ specifically is involved in compaction and probably regulates the function and localization of cytoskeleton elements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Knowledge of the elastic properties of actin filaments is crucial for considering its role in muscle contraction, cellular motile events, and formation of cell shape. The stiffness of actin filaments in the directions of stretching and bending has been determined. In this study, we have directly determined the torsional rigidity and breaking force of single actin filaments by measuring the rotational Brownian motion and tensile strength using optical tweezers and microneedles, respectively. Rotational angular fluctuations of filaments supplied the torsional rigidity as (8.0 ± 1.2) × 10−26 Nm2. This value is similar to that deduced from the longitudinal rigidity, assuming the actin filament to be a homogeneous rod. The breaking force of the actin–actin bond was measured while twisting a filament through various angles using microneedles. The breaking force decreased greatly under twist, e.g., from 600–320 pN when filaments were turned through 90°, independent of the rotational direction. Our results indicate that an actin filament exhibits comparable flexibility in the rotational and longitudinal directions, but breaks more easily under torsional load.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vascular endothelial growth factor C (VEGF-C) recently has been described to be a relatively specific growth factor for the lymphatic vascular system. Here we report that ectopic application of recombinant VEGF-C also has potent angiogenic effects in vivo. VEGF-C is sufficiently potent to stimulate neovascularization from limbal vessels in the mouse cornea. Similar to VEGF, the angiogenic response of corneas induced by VEGF-C is intensive, with a high density of new capillaries. However, the outgrowth of microvessels stimulated by VEGF-C was significantly longer than that induced by VEGF. In the developing embryo, VEGF-C was able to induce branch sprouts from the established blood vessels. VEGF-C also induced an elongated, spindle-like cell shape change and actin reorganization in both VEGF receptor (VEGFR)-2 and VEGFR-3-overexpressing endothelial cells, but not in VEGFR-1-expressing cells. Further, both VEGFR-2 and VEGFR-3 could mediate proliferative and chemotactic responses in endothelial cells on VEGF-C stimulation. Thus, VEGF-C may regulate physiological angiogenesis and participate in the development and progression of angiogenic diseases in addition to lymphangiogenesis.