17 resultados para Cell imaging

em National Center for Biotechnology Information - NCBI


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Secretory granules store neuropeptides and hormones and exhibit regulated exocytosis upon appropriate cellular stimulation. They are generated in the trans-Golgi network as immature secretory granules, short-lived vesicular intermediates, which undergo a complex and poorly understood maturation process. Due to their short half-life and low abundance, real-time studies of immature secretory granules have not been previously possible. We describe here a pulse/chase-like system based on the expression of a human chromogranin B-GFP fusion protein in neuroendocrine PC12 cells, which permits direct visualization of the budding of immature secretory granules and their dynamics during maturation. Live cell imaging revealed that newly formed immature secretory granules are transported in a direct and microtubule-dependent manner within a few seconds to the cell periphery. Our data suggest that the cooperative action of microtubules and actin filaments restricts immature secretory granules to the F-actin-rich cell cortex, where they move randomly and mature completely within a few hours. During this maturation period, secretory granules segregate into pools of different motility. In a late phase of maturation, 60% of secretory granules were found to be immobile and about half of these underwent F-actin-dependent tethering.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hippocampal neurons in culture develop morphological polarity in a sequential pattern; axons form before dendrites. Molecular differences, particularly those of membrane proteins, underlie the functional polarity of these domains, yet little is known about the temporal relationship between membrane protein polarization and morphological polarization. We took advantage of viral expression systems to determine when during development the polarization of membrane proteins arises. All markers were unpolarized in neurons before axonogenesis. In neurons with a morphologically distinguishable axon, even on the first day in culture, both axonal and dendritic proteins were polarized. The degree of polarization at these early stages was somewhat less than in mature cells and varied from cell to cell. The cellular mechanism responsible for the polarization of the dendritic marker protein transferrin receptor (TfR) in mature cells centers on directed transport to the dendritic domain. To examine the relationship between cell surface polarization and transport, we assessed the selectivity of transport by live cell imaging. TfR-green fluorescent protein-containing vesicles were already preferentially transported into dendrites at 2 days, the earliest time point we could measure. The selectivity of transport also varied somewhat among cells, and the amount of TfR-green fluorescent protein fluorescence on intracellular structures within the axon correlated with the amount of cell surface expression. This observation implies that selective microtubule-based transport is the primary mechanism that underlies the polarization of TfR on the cell surface. By 5 days in culture, the extent of polarization on the cell surface and the selectivity of transport reached mature levels.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

One of the earliest events in programmed cell death is the externalization of phosphatidylserine, a membrane phospholipid normally restricted to the inner leaflet of the lipid bilayer. Annexin V, an endogenous human protein with a high affinity for membrane bound phosphatidylserine, can be used in vitro to detect apoptosis before other well described morphologic or nuclear changes associated with programmed cell death. We tested the ability of exogenously administered radiolabeled annexin V to concentrate at sites of apoptotic cell death in vivo. After derivatization with hydrazinonicotinamide, annexin V was radiolabeled with technetium 99m. In vivo localization of technetium 99m hydrazinonicotinamide-annexin V was tested in three models: fuminant hepatic apoptosis induced by anti-Fas antibody injection in BALB/c mice; acute rejection in ACI rats with transplanted heterotopic PVG cardiac allografts; and cyclophosphamide treatment of transplanted 38C13 murine B cell lymphomas. External radionuclide imaging showed a two- to sixfold increase in the uptake of radiolabeled annexin V at sites of apoptosis in all three models. Immunohistochemical staining of cardiac allografts for exogenously administered annexin V revealed intense staining of numerous myocytes at the periphery of mononuclear infiltrates of which only a few demonstrated positive apoptotic nuclei by the terminal deoxynucleotidyltransferase-mediated UTP end labeling method. These results suggest that radiolabeled annexin V can be used in vivo as a noninvasive means to detect and serially image tissues and organs undergoing programmed cell death.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The spatial and temporal dynamics of two intracellular second messengers, cAMP and Ca2+, were simultaneously monitored in living cells by digital fluorescence ratio imaging using FlCRhR, a single-excitation dual-emission cAMP indicator, and fura-2, a dual-excitation single-emission Ca2+ probe. In single C6-2B glioma cells, isoproterenol- or forskolin-evoked cAMP accumulation (measured in vivo as an increased FlCRhR emission ratio) was reduced when cytosolic free Ca2+ concentration was elevated before, simultaneously with, or after cAMP activation. However, in REF-52 fibroblasts, Ca2+ neither prevented nor reduced forskolin-stimulated cAMP production. These results provide novel in vivo evidence for the Ca2+ modulation of the cAMP transduction pathway in C6-2B cells. The simultaneous microscopic measurement of cAMP and Ca2+ kinetics in single cells makes it now possible to study the regulatory interactions between these second messengers at the cellular and even the subcellular level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a serendipitous discovery that extends the impressive catalog of reporter functions performed by green fluorescent protein (GFP) or its derivatives. When two GFP molecules are brought into proximity, changes in the relative intensities of green fluorescence emitted upon excitation at 395 vs. 475 nm result. These spectral changes provide a sensitive ratiometric index of the extent of self-association that can be exploited to quantitatively image homo-oligomerization or clustering processes of GFP-tagged proteins in vivo. The method, which we term proximity imaging (PRIM), complements fluorescence resonance energy transfer between a blue fluorescent protein donor and a GFP acceptor, a powerful method for imaging proximity relationships between different proteins. However, unlike fluorescence resonance energy transfer (which is a spectral interaction), PRIM depends on direct contact between two GFP modules, which can lead to structural perturbations and concomitant spectral changes within a module. Moreover, the precise spatial arrangement of the GFP molecules within a given dimer determines the magnitude and direction of the spectral change. We have used PRIM to detect FK1012-induced dimerization of GFP fused to FK506-binding protein and clustering of glycosylphosphatidylinositol-anchored GFP at cell surfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In search of novel genes expressed in metastatic prostate cancer, we subtracted cDNA isolated from benign prostatic hypertrophic tissue from cDNA isolated from a prostate cancer xenograft model that mimics advanced disease. One novel gene that is highly expressed in advanced prostate cancer encodes a 339-amino acid protein with six potential membrane-spanning regions flanked by hydrophilic amino- and carboxyl-terminal domains. This structure suggests a potential function as a channel or transporter protein. This gene, named STEAP for six-transmembrane epithelial antigen of the prostate, is expressed predominantly in human prostate tissue and is up-regulated in multiple cancer cell lines, including prostate, bladder, colon, ovarian, and Ewing sarcoma. Immunohistochemical analysis of clinical specimens demonstrates significant STEAP expression at the cellcell junctions of the secretory epithelium of prostate and prostate cancer cells. Little to no staining was detected at the plasma membranes of normal, nonprostate human tissues, except for bladder tissue, which expressed low levels of STEAP at the cell membrane. Protein analysis located STEAP at the cell surface of prostate-cancer cell lines. Our results support STEAP as a cell-surface tumor-antigen target for prostate cancer therapy and diagnostic imaging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the dynamic behavior of cytoskeletal fine structure in the lamellipodium of nerve growth cones using a new type of polarized light microscope (the Pol-Scope). Pol-Scope images display with exquisite resolution and definition birefringent fine structures, such as filaments and membranes, without having to treat the cell with exogenous dyes or fluorescent labels. Furthermore, the measured birefringence of protein fibers in the thin lamellipodial region can be interpreted in terms of the number of filaments in the bundles. We confirmed that birefringent fibers are actin-based using conventional fluorescence-labeling methods. By recording movies of time-lapsed Pol-Scope images, we analyzed the creation and dynamic composition of radial fibers, filopodia, and intrapodia in advancing growth cones. The strictly quantitative information available in time-lapsed Pol-Scope images confirms previously deduced behavior and provides new insight into the architectural dynamics of filamentous actin.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A hybrid protein, tPA/GFP, consisting of rat tissue plasminogen activator (tPA) and green fluorescent protein (GFP) was expressed in PC12 cells and used to study the distribution, secretory behavior, and dynamics of secretory granules containing tPA in living cells with a neuronal phenotype. High-resolution images demonstrate that tPA/GFP has a growth cone-biased distribution in differentiated cells and that tPA/GFP is transported in granules of the regulated secretory pathway that colocalize with granules containing secretogranin II. Time-lapse images of secretion reveal that secretagogues induce substantial loss of cellular tPA/GFP fluorescence, most importantly from growth cones. Time-lapse images of the axonal transport of granules containing tPA/GFP reveal a surprising complexity to granule dynamics. Some granules undergo canonical fast axonal transport; others move somewhat more slowly, especially in highly fluorescent neurites. Most strikingly, granules traffic bidirectionally along neurites to an extent that depends on granule accumulation, and individual granules can reverse their direction of motion. The retrograde component of this bidirectional transport may help to maintain cellular homeostasis by transporting excess tPA/GFP back toward the cell body. The results presented here provide a novel view of the axonal transport of secretory granules. In addition, the results suggest that tPA is targeted for regulated secretion from growth cones of differentiated cells, strategically positioning tPA to degrade extracellular barriers or to activate other barrier-degrading proteases during axonal elongation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We are developing quantitative assays to repeatedly and noninvasively image expression of reporter genes in living animals, using positron emission tomography (PET). We synthesized positron-emitting 8-[18F]fluoroganciclovir (FGCV) and demonstrated that this compound is a substrate for the herpes simplex virus 1 thymidine kinase enzyme (HSV1-TK). Using positron-emitting FGCV as a PET reporter probe, we imaged adenovirus-directed hepatic expression of the HSV1-tk reporter gene in living mice. There is a significant positive correlation between the percent injected dose of FGCV retained per gram of liver and the levels of hepatic HSV1-tk reporter gene expression (r2 > 0.80). Over a similar range of HSV1-tk expression in vivo, the percent injected dose retained per gram of liver was 0–23% for ganciclovir and 0–3% for FGCV. Repeated, noninvasive, and quantitative imaging of PET reporter gene expression should be a valuable tool for studies of human gene therapy, of organ/cell transplantation, and of both environmental and behavioral modulation of gene expression in transgenic mice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During illumination, Ca2+ enters fly photoreceptor cells through light-activated channels that are located in the rhabdomere, the compartment specialized for phototransduction. From the rhabdomere, Ca2+ diffuses into the cell body. We visualize this process by rapidly imaging the fluorescence in a cross section of a photoreceptor cell injected with a fluorescent Ca2+ indicator in vivo. The free Ca2+ concentration in the rhabdomere shows a very fast and large transient shortly after light onset. The free Ca2+ concentration in the cell body rises more slowly and displays a much smaller transient. After ≈400 ms of light stimulation, the Ca2+ concentration in both compartments reaches a steady state, indicating that thereafter an amount of Ca2+, equivalent to the amount of Ca2+ flowing into the cell, is extruded. Quantitative analysis demonstrates that during the steady state, the free Ca2+ concentration in the rhabdomere and throughout the cell body is the same. This shows that Ca2+ extrusion takes place very close to the location of Ca2+ influx, the rhabdomere, because otherwise gradients in the steady-state distribution of Ca2+ should be measured. The close colocalization of Ca2+ influx and Ca2+ extrusion ensures that, after turning off the light, Ca2+ removal from the rhabdomere is faster than from the cell body. This is functionally significant because it ensures rapid dark adaptation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The high affinity receptor for IgE, FcɛRI on mast cells and basophils plays an essential role in immunological defense. Upon multivalent antigen binding, FcɛRI becomes phoshorylated by the protein-tyrosine kinase Lyn, as a result of receptor clustering in lipid rafts. FcɛRI has been shown to be ubiquitinated. Ubiquitination can lead to degradation by proteasomes, but it can also act as a sorting signal to internalize proteins destined to the endosomal/lysosomal pathway. We have analyzed whether FcɛRI ubiquitination takes place within rafts. We report biochemical and imaging evidence in rat basoleukemia cells for the presence of ubiquitinated FcɛRI in clustered rafts upon receptor activation. Moreover, we demonstrated that the ubiquitin ligases Cbl and Nedd4 colocalize with FcɛRI patches and showed that both ligases become associated with lipid rafts after activation of IgE signaling. Because Cbl is known to interact with the FcɛRI signaling complex, ubiquitination is likely to be an important parameter regulating IgE-triggered signaling occurring in rafts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have devised a microspectroscopic strategy for assessing the intracellular (re)distribution and the integrity of the primary structure of proteins involved in signal transduction. The purified proteins are fluorescent-labeled in vitro and reintroduced into the living cell. The localization and molecular state of fluorescent-labeled protein kinase C beta I isozyme were assessed by a combination of quantitative confocal laser scanning microscopy, fluorescence lifetime imaging microscopy, and novel determinations of fluorescence resonance energy transfer based on photobleaching digital imaging microscopy. The intensity and fluorescence resonance energy transfer efficiency images demonstrate the rapid nuclear translocation and ensuing fragmentation of protein kinase C beta I in BALB/c3T3 fibroblasts upon phorbol ester stimulation, and suggest distinct, compartmentalized roles for the regulatory and catalytic fragments.