88 resultados para Cell Adhesion Molecules

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To examine the role of complement components as regulators of the expression of endothelial adhesive molecules in response to immune complexes (ICs), we determined whether ICs stimulate both endothelial adhesiveness for leukocytes and expression of E-selectin and intercellular and vascular cell adhesion molecules 1 (ICAM-1 and VCAM-1). We found that ICs [bovine serum albumin (BSA)-anti-BSA] stimulated endothelial cell adhesiveness for added leukocytes in the presence of complement-sufficient normal human serum (NHS) but not in the presence of heat-inactivated serum (HIS) or in tissue culture medium alone. Depletion of complement component C3 or C8 from serum did not prevent enhanced endothelial adhesiveness stimulated by ICs. In contrast, depletion of complement component C1q markedly inhibited IC-stimulated endothelial adhesiveness for leukocytes. When the heat-labile complement component C1q was added to HIS, the capacity of ICs to stimulate endothelial adhesiveness for leukocytes was completely restored. Further evidence for the possible role of C1q in mediating the effect of ICs on endothelial cells was the discovery of the presence of the 100- to 126-kDa C1q-binding protein on the surface of endothelial cells (by cytofluorography) and of message for the 33-kDa C1q receptor in resting endothelial cells (by reverse transcription-PCR). Inhibition of protein synthesis by cycloheximide blocked endothelial adhesiveness for leukocytes stimulated by either interleukin 1 or ICs in the presence of NHS. After stimulation with ICs in the presence of NHS, endothelial cells expressed increased numbers of adhesion molecules (E-selectin, ICAM-1, and VCAM-1). Endothelial expression of adhesion molecules mediated, at least in part, endothelial adhesiveness for leukocytes, since leukocyte adhesion was blocked by monoclonal antibodies directed against E-selectin. These studies show that ICs stimulate endothelial cells to express adhesive proteins for leukocytes in the presence of a heat-labile serum factor. That factor appears to be C1q.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell adhesion molecules (CAMs) are known to be involved in a variety of developmental processes that play key roles in the establishment of synaptic connectivity during embryonic development, but recent evidence implicates the same molecules in synaptic plasticity of the adult. In the present study, we have used neural CAM (NCAM)-deficient mice, which have learning and behavioral deficits, to evaluate NCAM function in the hippocampal mossy fiber system. Morphological studies demonstrated that fasciculation and laminar growth of mossy fibers were strongly affected, leading to innervation of CA3 pyramidal cells at ectopic sites, whereas individual mossy fiber boutons appeared normal. Electrophysiological recordings performed in hippocampal slice preparations revealed that both basal synaptic transmission and two forms of short-term plasticity, i.e., paired-pulse facilitation and frequency facilitation, were normal in mice lacking all forms of NCAM. However, long-term potentiation of glutamatergic excitatory synapses after brief trains of repetitive stimulation was abolished. Taken together, these results strongly suggest that in the hippocampal mossy fiber system, NCAM is essential both for correct axonal growth and synaptogenesis and for long-term changes in synaptic strength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell adhesion molecules (CAMs) mediate cell attachment and stress transfer through extracellular domains. Here we forcibly unfold the Ig domains of a prototypical Ig superfamily CAM that contains intradomain disulfide bonds. The Ig domains of all such CAMs have conformations homologous to cadherin extracellular domains, titin Ig-type domains, and fibronectin type-III (FNIII) domains. Atomic force microscopy has been used to extend the five Ig domains of Mel-CAM (melanoma CAM)—a protein that is overexpressed in metastatic melanomas—under conditions where the disulfide bonds were either left intact or disrupted through reduction. Under physiological conditions where intradomain disulfide bonds are intact, partial unfolding was observed at forces far smaller than those reported previously for either titin's Ig-type domains or tenascin's FNIII domains. This partial unfolding under low force may be an important mechanism for imparting elasticity to cellcell contacts, as well as a regulatory mechanism for adhesive interactions. Under reducing conditions, Mel-CAM's Ig domains were found to fully unfold through a partially folded state and at slightly higher forces. The results suggest that, in divergent evolution of all such domains, stabilization imparted by disulfide bonds relaxes requirements for strong, noncovalent, folded-state interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Decreased nitric oxide (NO) activity, the formation of reactive oxygen species, and increased endothelial expression of the redox-sensitive vascular cell adhesion molecule 1 (VCAM-1) gene in the vessel wall are early and characteristic features of atherosclerosis. To explore whether these phenomena are functionally interrelated, we tested the hypothesis that redox-sensitive VCAM-1 gene expression is regulated by a NO-sensitive mechanism. In early passaged human umbilical vein endothelial cells and human dermal microvascular endothelial cells, the NO donor diethylamine-NO (DETA-NO, 100 microM) reduced VCAM-1 gene expression induced by the cytokine tumor necrosis factor alpha (TNF-alpha, 100 units/ml) at the cell surface level by 65% and intracellular adhesion molecule 1 (ICAM-1) gene expression by 35%. E-selectin gene expression was not affected. No effect on expression of cell adhesion molecules was observed with DETA alone. Moreover, DETA-NO suppressed TNF-alpha-induced mRNA accumulation of VCAM-1 and TNF-alpha-mediated transcriptional activation of the human VCAM-1 promoter. Conversely, treatment with NG-monomethyl-L-arginine (L-NMMA, 1 mM), an inhibitor of NO synthesis, augmented cytokine induction of VCAM-1 and ICAM-1 mRNA accumulation. By gel mobility shift analysis, DETA-NO inhibited TNF-alpha activation of DNA binding protein activity to the VCAM-1 NF-kappa B like binding sites. Peroxy-fatty acids such as 13-hydroperoxydodecanoeic acid (linoleyl hydroperoxide) may serve as an intracellular signal for NF-kappa B activation. Using thin layer chromatography, DETA-NO (100 microM) suppressed formation of this metabolite, suggesting that DETA-NO modifies the reactivity of oxygen intermediates in the vascular endothelium. Through this mechanism, NO may function as an immunomodulator of the vessel wall and thus mediate inflammatory events involved in the pathogenesis of atherosclerosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mucosal vascular addressin cell adhesion molecule 1 (MAdCAM-1) is involved in trafficking of lymphocytes to mucosal endothelium. Expression of MAdCAM-1 is induced in the murine endothelial cell line bEnd.3 by tumor necrosis factor alpha (TNF-alpha), interleukin 1, and bacterial lipopolysaccharide. Here we show that TNF-alpha enhances expression of a firefly luciferase reporter directed by the MAdCAM-1 promoter, confirming transcriptional regulation of MAdCAM-1. Mutational analysis of the promoter indicates that a DNA fragment extending from nt -132 to nt +6 of the gene is sufficient for TNF-alpha inducibility. Two regulatory sites critical for TNF-alpha induction were identified in this region. DNA-binding experiments demonstrate that NF-kappa B proteins from nuclear extracts of TNF-alpha-stimulated bEnd.3 cells bind to these sites, and transfection assays with promoter mutants of the MAdCAM-1 gene indicate that occupancy of both sites is essential for promoter function. The predominant NF-kappa B binding activity detected with these nuclear extracts is a p65 homodimer. These findings establish that, as with other endothelial cell adhesion molecules, transcriptional induction of MAdCAM-1 by TNF-alpha requires activated NF-kappa B proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

bEND.3 cells are polyoma middle T-transformed mouse brain endothelial cells that express very little or no thrombospondin-1, a natural inhibitor of angiogenesis, but express high levels of platelet endothelial cell adhesion molecule-1 (PECAM-1) that localizes to sites of cellcell contact. Here, we have examined the role of PECAM-1 in regulation of bEND.3 cell proliferation, migration, morphogenesis, and hemangioma formation. We show that down-regulating PECAM-1 expression by antisense transfection of bEND.3 cells has a dramatic effect on their morphology, proliferation, and morphogenesis on Matrigel. There is an optimal level for PECAM-1 expression such that high levels of PECAM-1 inhibit, whereas moderate levels of PECAM-1 stimulate, endothelial cell morphogenesis. The down-regulation of PECAM-1 in bEND.3 cells resulted in reexpression of endogenous thrombospondin-1 and its antiangiogenic receptor CD36. The expression of the vascular endothelial growth factor receptors flk-1 and flt-1, as well as integrins and metalloproteinases (which are involved in angiogenesis), were also affected. These observations are consistent with the changes observed in proliferation, migration, and adhesion characteristics of the antisense-transfected bEND.3 cells as well as with their lack of ability to form hemangiomas in mice. Thus, a reciprocal relationship exists between thrombospondin-1 and PECAM-1 expression, such that these two molecules appear to be constituents of a “switch” that regulates in concert many components of the angiogenic and differentiated phenotypes of endothelial cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the structure of the cell adhesion molecule L1 by electron microscopy. We were particularly interested in the conformation of the four N-terminal immunoglobulin domains, because x-ray diffraction showed that these domains are bent into a horseshoe shape in the related molecules hemolin and axonin-1. Surprisingly, rotary-shadowed specimens showed the molecules to be elongated, with no indication of the horseshoe shape. However, sedimentation data suggested that these domains of L1 were folded into a compact shape in solution; therefore, this prompted us to look at the molecules by an alternative technique, negative stain. The negative stain images showed a compact shape consistent with the expected horseshoe conformation. We speculate that in rotary shadowing the contact with the mica caused a distortion of the protein, weakening the bonds forming the horseshoe and permitting the molecule to extend. We have thus confirmed that the L1 molecule is primarily in the horseshoe conformation in solution, and we have visualized for the first time its opening into an extended conformation. Our study resolves conflicting interpretations from previous electron microscopy studies of L1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystal structure of the pheromone Er-1 from the unicellular eukaryotic organism Euplotes raikovi was determined at 1.6 A resolution and refined to a crystallographic R factor of 19.9%. In the tightly packed crystal, two extensive intermolecular helix-helix interactions arrange the Er-1 molecules into layers. Since the putative receptor of the pheromone is a membrane-bound protein, whose extracellular C-terminal domain is identical in amino acid sequence to the soluble pheromone, the interactions found in the crystal may mimic the pheromone-receptor interactions as they occur on a cell surface. Based on this, we propose a model for the interaction between soluble pheromone molecules and their receptors. In this model, strong pheromone-receptor binding emerges as a consequence of the cooperative utilization of several weak interactions. The model offers an explanation for the results of binding studies and may also explain the adhesion between cells that occurs during mating.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vascular cell adhesion molecule 1 (VCAM-1) represents a structurally and functionally distinct class of immunoglobulin superfamily molecules that bind leukocyte integrins and are involved in inflammatory and immune functions. X-ray crystallography defines the three-dimensional structure of the N-terminal two-domain fragment that participates in ligand binding. Residues in domain 1 important for ligand binding reside in the C-D loop, which projects markedly from one face of the molecule near the contact between domains 1 and 2. A cyclic peptide that mimics this loop inhibits binding of alpha 4 beta 1 integrin-bearing cells to VCAM-1. These data demonstrate how crystallographic structural information can be used to design a small molecule inhibitor of biological function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

After a penetrating lesion in the central nervous system, astrocytes enlarge, divide, and participate in creating an environment that adversely affects neuronal regeneration. We have recently shown that the neural cell adhesion molecule (N-CAM) partially inhibits the division of early postnatal rat astrocytes in vitro. In the present study, we demonstrate that addition of N-CAM, the third immunoglobulin-like domain of N-CAM, or a synthetic decapeptide corresponding to a putative homophilic binding site in N-CAM partially inhibits astrocyte proliferation after a stab lesion in the adult rat brain. Animals were lesioned in the cerebral cortex, hippocampus, or striatum with a Hamilton syringe and needle at defined stereotaxic positions. On one side, the lesions were concomitantly infused with N-CAM or with one of the N-CAM-related molecules. As a control, a peptide of the same composition as the N-CAM decapeptide but of random sequence was infused on the contralateral side of the brain. We consistently found that the population of dividing astrocytes was significantly smaller on the side in which N-CAM or one of the N-CAM-related molecules was infused than on the opposite side. The inhibition was greatest in the cortical lesion sites (approximately 50%) and was less pronounced in the hippocampus (approximately 25%) and striatum (approximately 20%). Two weeks after the lesion, the cerebral cortical sites infused with N-CAM continued to exhibit a significantly smaller population of dividing astrocytes than the sites on the opposite side. When N-CAM and basic fibroblast growth factor, which is known to stimulate astrocyte division in vitro, were coinfused into cortical lesion sites, astrocyte proliferation was still inhibited. These results suggest the hypothesis that, by reducing glial proliferation, N-CAM or its peptides may help create an environment that is more suitable for neuronal regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The integrin-linked kinase (ILK) is an ankyrin repeat containing serine-threonine protein kinase that can interact directly with the cytoplasmic domains of the β1 and β3 integrin subunits and whose kinase activity is modulated by cell–extracellular matrix interactions. Overexpression of constitutively active ILK results in loss of cellcell adhesion, anchorage-independent growth, and tumorigenicity in nude mice. We now show that modest overexpression of ILK in intestinal epithelial cells as well as in mammary epithelial cells results in an invasive phenotype concomitant with a down-regulation of E-cadherin expression, translocation of β-catenin to the nucleus, formation of a complex between β-catenin and the high mobility group transcription factor, LEF-1, and transcriptional activation by this LEF-1/β-catenin complex. We also find that LEF-1 protein expression is rapidly modulated by cell detachment from the extracellular matrix, and that LEF-1 protein levels are constitutively up-regulated at ILK overexpression. These effects are specific for ILK, because transformation by activated H-ras or v-src oncogenes do not result in the activation of LEF-1/β-catenin. The results demonstrate that the oncogenic properties of ILK involve activation of the LEF-1/β-catenin signaling pathway, and also suggest ILK-mediated cross-talk between cell–matrix interactions and cellcell adhesion as well as components of the Wnt signaling pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cellcell recognition and patterning of cell contacts have a critical role in mediating reversible assembly of a variety of transcellular complexes in the nervous system. This study provides evidence for regulation of cell interactions through modulation of ankyrin binding to neurofascin, a member of the L1CAM family of nervous system cell adhesion molecules. The phosphorylation state of the conserved FIGQY tyrosine in the cytoplasmic domain of neurofascin regulates ankyrin binding and governs neurofascin-dependent cell aggregation as well as cell sorting when neurofascin is expressed in neuroblastoma cells. These findings suggest a general mechanism for the patterning of cell contact based on external signals that regulate tyrosine phosphorylation of L1CAM members and modulate their binding to ankyrin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adhesive mechanisms allowing hematopoietic progenitor cells (HPC) homing to the bone marrow (BM) after BM transplantation are poorly understood. We investigated the role of endothelial selectins and vascular cell adhesion molecule-1 (VCAM-1) in this process. Lethally irradiated recipient mice deficient in both P-and E-selectins (P/E−/−), reconstituted with minimal numbers (≤5 × 104) of wild-type BM cells, poorly survived the procedure compared with wild-type recipients. Excess mortality in P/E−/− mice, after a lethal dose of irradiation, was likely caused by a defect of HPC homing. Indeed, we observed that the recruitment of HPC to the BM was reduced in P/E−/− animals, either splenectomized or spleen-intact. Homing into the BM of P/E−/− recipient mice was further compromised when a function-blocking VCAM-1 antibody was administered. Circulating HPC, 14 hr after transplantation, were greatly increased in P/E−/− mice treated with anti-VCAM-1 compared with P/E−/− mice treated with just IgG or wild-type mice treated with either anti-VCAM-1 or IgG. Our results indicate that endothelial selectins play an important role in HPC homing to the BM. Optimal recruitment of HPC after lethal doses of irradiation requires the combined action of both selectins and VCAM-1 expressed on endothelium of the BM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cell adhesion molecule L1 is a potent inducer of neurite outgrowth and it has been implicated in X-linked hydrocephalus and related neurological disorders. To investigate the mechanisms of neurite outgrowth stimulated by L1, attempts were made to identify the neuritogenic sites in L1. Fusion proteins containing different segments of the extracellular region of L1 were prepared and different neuronal cells were assayed on substrate-coated fusion proteins. Interestingly, both immunoglobulin (Ig)-like domains 2 and 6 (Ig2, Ig6) promoted neurite outgrowth from dorsal root ganglion cells, whereas neural retinal cells responded only to Ig2. L1 Ig2 contains a previously identified homophilic binding site, whereas L1 Ig6 contains an Arg-Gly-Asp (RGD) sequence. The neuritogenic activity of Ig6 was abrogated by mutations in the RGD site. The addition of RGD-containing peptides also inhibited the promotion of neurite outgrowth from dorsal root ganglion cells by glutathione S-transferase-Ig6, implicating the involvement of an integrin. The monoclonal antibody LM609 against αvβ3 integrin, but not an anti-β1 antibody, inhibited the neuritogenic effects of Ig6. These data thus provide the first evidence that the RGD motif in L1 Ig6 is capable of promoting neurite outgrowth via interaction with the αvβ3 integrin on neuronal cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have previously shown that the LIM domains of paxillin operate as the focal adhesion (FA)-targeting motif of this protein. In the current study, we have identified the capacity of paxillin LIM2 and LIM3 to serve as binding sites for, and substrates of serine/threonine kinases. The activities of the LIM2- and LIM3-associated kinases were stimulated after adhesion of CHO.K1 cells to fibronectin; consequently, a role for LIM domain phosphorylation in regulating the subcellular localization of paxillin after adhesion to fibronectin was investigated. An avian paxillin-CHO.K1 model system was used to explore the role of paxillin phosphorylation in paxillin localization to FAs. We found that mutations of paxillin that mimicked LIM domain phosphorylation accelerated fibronectin-induced localization of paxillin to focal contacts. Further, blocking phosphorylation of the LIM domains reduced cell adhesion to fibronectin, whereas constitutive LIM domain phosphorylation significantly increased the capacity of cells to adhere to fibronectin. The potentiation of FA targeting and cell adhesion to fibronectin was specific to LIM domain phosphorylation as mutation of the amino-terminal tyrosine and serine residues of paxillin that are phosphorylated in response to fibronectin adhesion had no effect on the rate of FA localization or cell adhesion. This represents the first demonstration of the regulation of protein localization through LIM domain phosphorylation and suggests a novel mechanism of regulating LIM domain function. Additionally, these results provide the first evidence that paxillin contributes to “inside-out” integrin-mediated signal transduction.