4 resultados para Cathepsin B

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cathepsin B (CTSB) is overexpressed in tumors of the lung, prostate, colon, breast, and stomach. However, evidence of primary genomic alterations in the CTSB gene during tumor initiation or progression has been lacking. We have found a novel amplicon at 8p22–23 that results in CTSB overexpression in esophageal adenocarcinoma. Amplified genomic NotI–HinfI fragments were identified by two-dimensional DNA electrophoresis. Two amplified fragments (D4 and D5) were cloned and yielded unique sequences. Using bacterial artificial chromosome clones containing either D4 or D5, fluorescent in situ hybridization defined a single region of amplification involving chromosome bands 8p22–23. We investigated the candidate cancer-related gene CTSB, and potential coamplified genes from this region including farnesyl-diphosphate farnesyltransferase (FDFT1), arylamine N-acetyltransferase (NAT-1), lipoprotein lipase (LPL), and an uncharacterized expressed sequence tag (D8S503). Southern blot analysis of 66 esophageal adenocarcinomas demonstrated only CTSB and FDFT1 were consistently amplified in eight (12.1%) of the tumors. Neither NAT-1 nor LPL were amplified. Northern blot analysis showed overexpression of CTSB and FDFT1 mRNA in all six of the amplified esophageal adenocarcinomas analyzed. CTSB mRNA overexpression also was present in two of six nonamplified tumors analyzed. However, FDFT1 mRNA overexpression without amplification was not observed. Western blot analysis confirmed CTSB protein overexpression in tumor specimens with CTSB mRNA overexpression compared with either normal controls or tumors without mRNA overexpression. Abundant extracellular expression of CTSB protein was found in 29 of 40 (72.5%) of esophageal adenocarcinoma specimens by using immunohistochemical analysis. The finding of an amplicon at 8p22–23 resulting in CTSB gene amplification and overexpression supports an important role for CTSB in esophageal adenocarcinoma and possibly in other tumors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Previously, we showed that retinoic acid (RA) binds to the mannose-6-phosphate/insulin-like growth factor II receptor (M6P/IGF2R) with high affinity, suggesting that M6P/IGF2R may be a receptor for RA. Here, we show that RA, after 2–3 h of incubation with cultured neonatal-rat cardiac fibroblasts, dramatically alters the intracellular distribution of M6P/IGF2R as well as that of cathepsin B (a lysosomal protease bearing M6P). Immunofluorescence techniques indicate that this change in intracellular distribution is characterized by a shift of the proteins from the perinuclear area to cytoplasmic vesicles. The effect of RA was neither blocked by an RA nuclear receptor antagonist (AGN193109) nor mimicked by a selective RA nuclear-receptor agonist (TTNPB). Furthermore, the RA-induced translocation of cathepsin B was not observed in M6P/IGF2R-deficient P388D1 cells but occurred in stably transfected P388D1 cells expressing the receptor, suggesting that the effect of RA might be the result of direct interaction with M6P/IGF2R, rather than the result of binding to the nuclear receptors. These observations not only support the idea that M6P/IGF2R mediates an RA-response pathway but also indicate a role for RA in control of intracellular trafficking of lysosomal enzymes. Therefore, our observations may have important implications for the understanding of the diverse biological effects of retinoids.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The role of the lysosomal proteases cathepsins B and L and the calcium-dependent cytosolic protease calpain in hypoxia-induced renal proximal tubular injury was investigated. As compared to normoxic tubules, cathepsin B and L activity, evaluated by the specific fluorescent substrate benzyloxycarbonyl-L-phenylalanyl-L-arginine-7-amido-4-methylcoumarin, was not increased in hypoxic tubules or the medium used for incubation of hypoxic tubules in spite of high lactate dehydrogenase (LDH) release into the medium during hypoxia. These data in rat proximal tubules suggest that cathepsins are not released from lysosomes and do not gain access to the medium during hypoxia. An assay for calpain activity in isolated proximal tubules using the fluorescent substrate N-succinyl-Leu-Tyr-7-amido-4-methylcoumarin was developed. The calcium ionophore ionomycin induced a dose-dependent increase in calpain activity. This increase in calpain activity occurred prior to cell membrane damage as assessed by LDH release. Tubular calpain activity increased significantly by 7.5 min of hypoxia, before there was significant LDH release, and further increased during 20 min of hypoxia. The cysteine protease inhibitor N-benzyloxycarbonyl-Val-Phe methyl ester (CBZ) markedly decreased LDH release after 20 min of hypoxia and completely prevented the increase in calpain activity during hypoxia. The increase in calpain activity during hypoxia and the inhibitor studies with CBZ therefore supported a role for calpain as a mediator of hypoxia-induced proximal tubular injury.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antigen presentation by major histocompatibility complex (MHC) class II molecules requires the participation of different proteases in the endocytic route to degrade endocytosed antigens as well as the MHC class II-associated invariant chain (Ii). Thus far, only the cysteine protease cathepsin (Cat) S appears essential for complete destruction of Ii. The enzymes involved in degradation of the antigens themselves remain to be identified. Degradation of antigens in vitro and experiments using protease inhibitors have suggested that Cat B and Cat D, two major aspartyl and cysteine proteases, respectively, are involved in antigen degradation. We have analyzed the antigen-presenting properties of cells derived from mice deficient in either Cat B or Cat D. Although the absence of these proteases provoked a modest shift in the efficiency of presentation of some antigenic determinants, the overall capacity of Cat B−/− or Cat D−/− antigen-presenting cells was unaffected. Degradation of Ii proceeded normally in Cat B−/− splenocytes, as it did in Cat D−/− cells. We conclude that neither Cat B nor Cat D are essential for MHC class II-mediated antigen presentation.