2 resultados para Cateter de Fogarty

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel imaging technology, high-speed microscopy, has been used to visualize the process of GLUT4 translocation in response to insulin in single 3T3-L1 adipocytes. A key advantage of this technology is that it requires extremely low light exposure times, allowing the quasi-continuous capture of information over 20–30 min without photobleaching or photodamage. The half-time for the accumulation of GLUT4-eGFP (enhanced green fluorescent protein) at the plasma membrane in a single cell was found to be of 5–7 min at 37°C. This half-time is substantially longer than that of exocytic vesicle fusion in neuroendocrine cells, suggesting that additional regulatory mechanisms are involved in the stimulation of GLUT4 translocation by insulin. Analysis of four-dimensional images (3-D over time) revealed that, in response to insulin, GLUT4-eGFP-enriched vesicles rapidly travel from the juxtanuclear region to the plasma membrane. In nontransfected adipocytes, impairment of microtubule and actin filament function inhibited insulin-stimulated glucose transport by 70 and 50%, respectively. When both filament systems were impaired insulin-stimulated glucose transport was completely inhibited. Taken together, the data suggest that the regulation of long-range motility of GLUT4-containing vesicles through the interaction with microtubule- and actin-based cytoskeletal networks plays an important role in the overall effect of insulin on GLUT4 translocation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A fundamental question in the basic biology of aging is whether there is a universal aging process. If indeed such a process exists, one would expect that it develops at a higher rate in short- versus long-lived species. We have quantitated pentosidine, a marker of glycoxidative stress in skin collagen from eight mammalian species as a function of age. A curvilinear increase was modeled for all species, and the rate of increase correlated inversely with maximum life-span. Dietary restriction, a potent intervention associated with increased life-span, markedly inhibited glycoxidation rate in the rodent. On the assumption that collagen turnover rate is primarily influenced by the crosslinking due to glycoxidation, these results suggest that there is a progressive age-related deterioration of the process that controls the collagen glycoxidation rate. Thus, the ability to withstand damage due to glycoxidation and the Maillard reaction may be under genetic control.