284 resultados para Catalytic Subunit

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To get a better understanding of mutagenic mechanisms in humans, we have cloned and sequenced the human homolog of the Saccharomyces cerevisiae REV3 gene. The yeast gene encodes the catalytic subunit of DNA polymerase ζ, a nonessential enzyme that is thought to carry out translesion replication and is responsible for virtually all DNA damage-induced mutagenesis and the majority of spontaneous mutagenesis. The human gene encodes an expected protein of 3,130 residues, about twice the size of the yeast protein (1,504 aa). The two proteins are 29% identical in an amino-terminal region of ≈340 residues, 39% identical in a carboxyl-terminal region of ≈850 residues, and 29% identical in a 55-residue region in the middle of the two genes. The sequence of the expected protein strongly predicts that it is the catalytic subunit of a DNA polymerase of the pol ζ type; the carboxyl-terminal domain possesses, in the right order, the six motifs characteristic of eukaryotic DNA polymerases, most closely resembles yeast pol ζ among all polymerases in the GenBank database, and is different from the human α, δ, and ɛ enzymes. Human cells expressing high levels of an hsREV3 antisense RNA fragment grow normally, but show little or no UV-induced mutagenesis and are slightly more sensitive to killing by UV. The human gene therefore appears to carry out a function similar to that of its yeast counterpart.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein phosphatase 2A (PP2A) is a multimeric enzyme, containing a catalytic subunit complexed with two regulatory subunits. The catalytic subunit PP2A C is encoded by two distinct and unlinked genes, termed Cα and Cβ. The specific function of these two catalytic subunits is unknown. To address the possible redundancy between PP2A and related phosphatases as well as between Cα and Cβ, the Cα subunit gene was deleted by homologous recombination. Homozygous null mutant mice are embryonically lethal, demonstrating that the Cα subunit gene is an essential gene. As PP2A exerts a range of cellular functions including cell cycle regulation and cell fate determination, we were surprised to find that these embryos develop normally until postimplantation, around embryonic day 5.5/6.0. While no Cα protein is expressed, we find comparable expression levels of PP2A C at a time when the embryo is degenerating. Despite a 97% amino acid identity, Cβ cannot completely compensate for the absence of Cα. Degenerated embryos can be recovered even at embryonic day 13.5, indicating that although embryonic tissue is still capable of proliferating, normal differentiation is significantly impaired. While the primary germ layers ectoderm and endoderm are formed, mesoderm is not formed in degenerating embryos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Telomerase is an RNA-directed DNA polymerase, composed of RNA and protein subunits, that replicates the telomere ends of linear eukaryotic chromosomes. Using a genetic strategy described here, we identify the product of the EST2 gene, Est2p, as a subunit of telomerase in the yeast Saccharomyces cerevisiae. Est2p is required for enzyme catalysis, as mutations in EST2 were found to result in the absence of telomerase activity. Immunochemical experiments show that Est2p is an integral subunit of the telomerase enzyme. Critical catalytic residues present in RNA-directed DNA polymerases are conserved in Est2p; mutation of one such residue abolishes telomerase activity, suggesting a direct catalytic role for Est2p.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, TAP42 was isolated as a high copy suppressor of sit4−, a yeast phosphatase related to protein phosphatase 2A (PP2A). TAP42 is related to the murine α4 protein, which was discovered independently by its association with Ig-α in the B cell receptor complex. Herein we show that a glutathione S-transferase (GST)–α4 fusion protein bound the catalytic subunit (C) of human PP2A from monomeric or multimeric preparations of PP2A in a “pull-down” assay. In an overlay assay, the GST–α4 protein bound to the phosphorylated and unphosphorylated forms of C that were separated in two-dimensional gels and immobilized on filters. The results show direct and exclusive binding of α4 to C. This is unusual because all known regulatory B subunits, or tumor virus antigens, bind stably only to the AC dimer of PP2A. The α4–C form of PP2A had an increased activity ratio compared with the AC form of PP2A when myelin basic protein phosphorylated by mitogen-activated protein kinase and phosphorylase a were used as substrates. Recombinant α4 cleaved from GST was phosphorylated by p56lck tyrosine kinase and protein kinase C. A FLAG-tagged α4 expressed in COS7 cells was recovered as a protein containing phosphoserine and coimmunoprecipitated with the C but not the A subunit of PP2A. Treatment of cells with rapamycin prevented the association of PP2A with FLAG-α4. The results reveal a novel heterodimer α4–C form of PP2A that may be involved in rapamycin-sensitive signaling pathways in mammalian cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Apolipoprotein B (apoB) mRNA editing catalyzed by apoB mRNA editing catalytic subunit 1 (APOBEC-1) has been proposed to be a nuclear process. To test this hypothesis, the subcellular distribution of hemagglutinin-(HA) tagged APOBEC-1 expressed in transiently transfected hepatoma cells was determined by indirect immunofluorescence microscopy. HA-APOBEC-1 was detected in both the nucleus and cytoplasm of rat and human hepatoma cells. Mutagenesis of APOBEC-1 demonstrated that the N-terminal 56 amino acids (1–56) were necessary for the nuclear distribution of APOBEC-1, but this region did not contain a functional nuclear localization signal (NLS). However, we identified a 24-amino acid domain in the C terminus of APOBEC-1 with characteristics of a cytoplasmic retention signal (CRS) or a nuclear export signal (NES). These data suggest, therefore, that the nuclear import of APOBEC-1 may not be mediated by a positive NLS; rather, it may be achieved by overcoming the effect of a CRS/NES. We also demonstrated that the nuclear distribution of APOBEC-1 occurred only in cell lines that were capable of editing apoB RNA. We propose that the cellular distribution of APOBEC-1 is determined by multiple domains within this protein, and a nuclear localization of the enzyme may be regulated by cell type-specific factors that render these cells uniquely editing competent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Telomerase is an essential enzyme that maintains telomeres on eukaryotic chromosomes. In mammals, telomerase is required for the lifelong proliferative capacity of normal regenerative and reproductive tissues and for sustained growth in a dedifferentiated state. Although the importance of telomeres was first elucidated in plants 60 years ago, little is known about the role of telomeres and telomerase in plant growth and development. Here we report the cloning and characterization of the Arabidopsis telomerase reverse transcriptase (TERT) gene, AtTERT. AtTERT is predicted to encode a highly basic protein of 131 kDa that harbors the reverse transcriptase and telomerase-specific motifs common to all known TERT proteins. AtTERT mRNA is 10–20 times more abundant in callus, which has high levels of telomerase activity, versus leaves, which contain no detectable telomerase. Plants homozygous for a transfer DNA insertion into the AtTERT gene lack telomerase activity, confirming the identity and function of this gene. Because telomeres in wild-type Arabidopsis are short, the discovery that telomerase-null plants are viable for at least two generations was unexpected. In the absence of telomerase, telomeres decline by approximately 500 bp per generation, a rate 10 times slower than seen in telomerase-deficient mice. This gradual loss of telomeric DNA may reflect a reduced rate of nucleotide depletion per round of DNA replication, or the requirement for fewer cell divisions per organismal generation. Nevertheless, progressive telomere shortening in the mutants, however slow, ultimately should be lethal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA damage induced by ionizing radiation (IR) activates p53, leading to the regulation of downstream pathways that control cell-cycle progression and apoptosis. However, the mechanisms for the IR-induced p53 activation and the differential activation of pathways downstream of p53 are unclear. Here we provide evidence that the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) serves as an upstream effector for p53 activation in response to IR, linking DNA damage to apoptosis. DNA-PKcs knockout (DNA-PKcs−/−) mice were exposed to whole-body IR, and the cell-cycle and apoptotic responses were examined in their thymuses. Our data show that IR induction of apoptosis and Bax expression, both mediated via p53, was significantly suppressed in the thymocytes of DNA-PKcs−/− mice. In contrast, IR-induced cell-cycle arrest and p21 expression were normal. Thus, DNA-PKcs deficiency selectively disrupts p53-dependent apoptosis but not cell-cycle arrest. We also confirmed previous findings that p21 induction was attenuated and cell-cycle arrest was defective in the thymoctyes of whole body-irradiated Atm−/− mice, but the apoptotic response was unperturbed. Taken together, our results support a model in which the upstream effectors DNA-PKcs and Atm selectively activate p53 to differentially regulate cell-cycle and apoptotic responses. Whereas Atm selects for cell-cycle arrest but not apoptosis, DNA-PKcs selects for apoptosis but not cell-cycle arrest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Telomerase is a ribonucleoprotein complex that elongates telomeres, allowing the stable maintenance of chromosomes during multiple cell divisions. Here, we describe the isolation and characterization of the catalytic subunit of mouse telomerase, mTERT (mouse telomerase reverse transcriptase), an essential protein component of the telomerase complex. During embryonic development, mTERT mRNA is abundantly expressed in the whole embryo, especially in regions of intense proliferation. We found that the mTERT mRNA expression in both embryonic and adult tissues is independent of the essential RNA component of telomerase, mTR, and therefore, of the formation of active telomerase complexes. mTERT protein is present exclusively in tissues with telomerase activity, such as testis, spleen, and thymus. mTERT protein is barely detectable in the thymus of mTR−/− mice, suggesting that mTERT protein stability in this tissue may depend on the actual assembly of active telomerase complexes. Finally, we found that mouse and human telomerase catalytic subunit is located in the cell nucleus, and its localization is not regulated during cell cycle progression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To investigate the cell cycle checkpoint response to aberrant S phase-initiation, we analyzed mutations of the two DNA primase subunit genes of Schizosaccharomyces pombe, spp1+ and spp2+ (S. pombe primase 1 and 2). spp1+ encodes the catalytic subunit that synthesizes the RNA primer, which is then utilized by Polα to synthesize the initiation DNA. Here, we reported the isolation of the fission yeast spp1+ gene and cDNA and the characterization of Spp1 protein and its cellular localization during the cell cycle. Spp1 is essential for cell viability, and thermosensitive mutants of spp1+ exhibit an allele-specific abnormal mitotic phenotype. Mutations of spp1+ reduce the steady-state cellular levels of Spp1 protein and compromised the formation of Polα–primase complex. The spp1 mutant displaying an aberrant mitotic phenotype also fails to properly activate the Chk1 checkpoint kinase, but not the Cds1 checkpoint kinase. Mutational analysis of Polα has previously shown that activation of the replication checkpoint requires the initiation of DNA synthesis by Polα. Together, these have led us to propose that suboptimal cellular levels of polα–primase complex due to the allele-specific mutations of Spp1 might not allow Polα to synthesize initiation DNA efficiently, resulting in failure to activate a checkpoint response. Thus, a functional Spp1 is required for the Chk1-mediated, but not the Cds1-mediated, checkpoint response after an aberrant initiation of DNA synthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Binding of different regulatory subunits and methylation of the catalytic (C) subunit carboxy-terminal leucine 309 are two important mechanisms by which protein phosphatase 2A (PP2A) can be regulated. In this study, both genetic and biochemical approaches were used to investigate regulation of regulatory subunit binding by C subunit methylation. Monoclonal antibodies selectively recognizing unmethylated C subunit were used to quantitate the methylation status of wild-type and mutant C subunits. Analysis of 13 C subunit mutants showed that both carboxy-terminal and active site residues are important for maintaining methylation in vivo. Severe impairment of methylation invariably led to a dramatic decrease in Bα subunit binding but not of striatin, SG2NA, or polyomavirus middle tumor antigen (MT) binding. In fact, most unmethylated C subunit mutants showed enhanced binding to striatin and SG2NA. Certain carboxy-terminal mutations decreased Bα subunit binding without greatly affecting methylation, indicating that Bα subunit binding is not required for a high steady-state level of C subunit methylation. Demethylation of PP2A in cell lysates with recombinant PP2A methylesterase greatly decreased the amount of C subunit that could be coimmunoprecipitated via the Bα subunit but not the amount that could be coimmunoprecipitated with Aα subunit or MT. When C subunit methylation levels were greatly reduced in vivo, Bα subunits were found complexed exclusively to methylated C subunits, whereas striatin and SG2NA in the same cells bound both methylated and unmethylated C subunits. Thus, C subunit methylation is critical for assembly of PP2A heterotrimers containing Bα subunit but not for formation of heterotrimers containing MT, striatin, or SG2NA. These findings suggest that methylation may be able to selectively regulate the association of certain regulatory subunits with the A/C heterodimer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The accessory protein negative factor (Nef) from human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) is required for optimal viral infectivity and the progression to acquired immunodeficiency syndrome (AIDS). Nef interacts with the endocytic machinery, resulting in the down-regulation of cluster of differentiation antigen 4 (CD4) and major histocompatibility complex class I (MHCI) molecules on the surface of infected cells. Mutations in the C-terminal flexible loop of Nef result in a lower rate of internalization by this viral protein. However, no loop-dependent binding of Nef to adaptor protein-2 (AP-2), which is the adaptor protein complex that is required for the internalization of proteins from the plasma membrane, could be demonstrated. In this study we investigated the relevance of different motifs in Nef from SIVmac239 for its internalization, CD4 down-regulation, binding to components of the trafficking machinery, and viral infectivity. Our data suggest that the binding of Nef to the catalytic subunit H of the vacuolar membrane ATPase (V-ATPase) facilitates its internalization. This binding depends on the integrity of the whole flexible loop. Subsequent studies on Nef mutant viruses revealed that the flexible loop is essential for optimal viral infectivity. Therefore, our data demonstrate how Nef contacts the endocytic machinery in the absence of its direct binding to AP-2 and suggest an important role for subunit H of the V-ATPase in viral infectivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Failures to arrest growth in response to senescence or transforming growth factor β (TGF-β) are key derangements associated with carcinoma progression. We report that activation of telomerase activity may overcome both inhibitory pathways. Ectopic expression of the human telomerase catalytic subunit, hTERT, in cultured human mammary epithelial cells (HMEC) lacking both telomerase activity and p16INK4A resulted in gaining the ability to maintain indefinite growth in the absence and presence of TGF-β. The ability to maintain growth in TGF-β was independent of telomere length and required catalytically active telomerase capable of telomere maintenance in vivo. The capacity of ectopic hTERT to induce TGF-β resistance may explain our previously described gain of TGF-β resistance after reactivation of endogenous telomerase activity in rare carcinogen-treated HMEC. In those HMEC that overcame senescence, both telomerase activity and TGF-β resistance were acquired gradually during a process we have termed conversion. This effect of hTERT may model a key change occurring during in vivo human breast carcinogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In spite of much effort, no one has succeeded in isolating and characterizing the enzyme(s) responsible for synthesis of cellulose, the major cell wall polymer of plants. We have characterized two cotton (Gossypium hirsutum) cDNA clones and identified one rice (Oryza sativa) cDNA that are homologs of the bacterial celA genes that encode the catalytic subunit of cellulose synthase. Three regions in the deduced amino acid sequences of the plant celA gene products are conserved with respect to the proteins encoded by bacterial celA genes. Within these conserved regions, there are four highly conserved subdomains previously suggested to be critical for catalysis and/or binding of the substrate UDP-glucose (UDP-Glc). An overexpressed DNA segment of the cotton celA1 gene encodes a polypeptide fragment that spans these domains and binds UDP-Glc, while a similar fragment having one of these domains deleted does not. The plant celA genes show little homology at the N- and C-terminal regions and also contain two internal insertions of sequence, one conserved and one hypervariable, that are not found in the bacterial gene sequences. Cotton celA1 and celA2 genes are expressed at high levels during active secondary wall cellulose synthesis in developing cotton fibers. Genomic Southern blot analyses in cotton demonstrate that celA forms a small gene family.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Short- and long-term ethanol exposures have been shown to alter cellular levels of cAMP, but little is known about the effects of ethanol on cAMP-dependent protein kinase (PKA). When cAMP levels increase, the catalytic subunit of PKA (C alpha) is released from the regulatory subunit, phosphorylates nearby proteins, and then translocates to the nucleus, where it regulates gene expression. Altered localization of C alpha would have profound effects on multiple cellular functions. Therefore, we investigated whether ethanol alters intracellular localization of C alpha. NG108-15 cells were incubated in the presence or absence of ethanol for as long as 48 h, and localization of PKA subunits was determined by immunocytochemistry. We found that ethanol exposure produced a significant translocation of C alpha from the Golgi area to the nucleus. C alpha remained in the nucleus as long as ethanol was present. There was no effect of ethanol on localization of the type I regulatory subunit of PKA. Ethanol also caused a 43% decrease in the amount of type I regulatory subunit but had no effect on the amount of C alpha as determined by Western blot. These data suggest that ethanol-induced translocation of C alpha to the nucleus may account, in part, for diverse changes in cellular function and gene expression produced by alcohol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA-dependent protein kinase (DNA-PK) consists of a heterodimeric protein (Ku) and a large catalytic subunit (DNA-PKcs). The Ku protein has double-stranded DNA end-binding activity that serves to recruit the complex to DNA ends. Despite having serine/threonine protein kinase activity, DNA-PKcs falls into the phosphatidylinositol 3-kinase superfamily. DNA-PK functions in DNA double-strand break repair and V(D)J recombination, and recent evidence has shown that mouse scid cells are defective in DNA-PKcs. In this study we have cloned the cDNA for the carboxyl-terminal region of DNA-PKcs in rodent cells and identified the existence of two differently spliced products in human cells. We show that DNA-PKcs maps to the same chromosomal region as the mouse scid gene. scid cells contain approximately wild-type levels of DNA-PKcs transcripts, whereas the V-3 cell line, which is also defective in DNA-PKcs, contains very reduced transcript levels. Sequence comparison of the carboxyl-terminal region of scid and wild-type mouse cells enabled us to identify a nonsense mutation within a highly conserved region of the gene in mouse scid cells. This represents a strong candidate for the inactivating mutation in DNA-PKcs in the scid mouse.