8 resultados para Caspase 9

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies indicate that Caenorhabditis elegans CED-4 interacts with and promotes the activation of the death protease CED-3, and that this activation is inhibited by CED-9. Here we show that a mammalian homolog of CED-4, Apaf-1, can associate with several death proteases, including caspase-4, caspase-8, caspase-9, and nematode CED-3 in mammalian cells. The interaction with caspase-9 was mediated by the N-terminal CED-4-like domain of Apaf-1. Expression of Apaf-1 enhanced the killing activity of caspase-9 that required the CED-4-like domain of Apaf-1. Furthermore, Apaf-1 promoted the processing and activation of caspase-9 in vivo. Bcl-XL, an antiapoptotic member of the Bcl-2 family, was shown to physically interact with Apaf-1 and caspase-9 in mammalian cells. The association of Apaf-1 with Bcl-XL was mediated through both its CED-4-like domain and the C-terminal domain containing WD-40 repeats. Expression of Bcl-XL inhibited the association of Apaf-1 with caspase-9 in mammalian cells. Significantly, recombinant Bcl-XL purified from Escherichia coli or insect cells inhibited Apaf-1-dependent processing of caspase-9. Furthermore, Bcl-XL failed to inhibit caspase-9 processing mediated by a constitutively active Apaf-1 mutant, suggesting that Bcl-XL regulates caspase-9 through Apaf-1. These experiments demonstrate that Bcl-XL associates with caspase-9 and Apaf-1, and show that Bcl-XL inhibits the maturation of caspase-9 mediated by Apaf-1, a process that is evolutionarily conserved from nematodes to humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding how oncogenic transformation sensitizes cells to apoptosis may provide a strategy to kill tumor cells selectively. We previously developed a cell-free system that recapitulates oncogene dependent apoptosis as reflected by activation of caspases, the core of the apoptotic machinery. Here, we show that this activation requires a previously identified apoptosis-promoting complex consisting of caspase-9, APAF-1, and cytochrome c. As predicted by the in vitro system, preventing caspase-9 activation blocked drug-induced apoptosis in cells sensitized by E1A, an adenoviral oncogene. Oncogenes, such as E1A, appear to facilitate caspase-9 activation by several mechanisms, including the control of cytochrome c release from the mitochondria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We cloned a new inhibitor of apoptosis protein (IAP) homolog, SfIAP, from Spodoptera frugiperda Sf-21 cells, a host of insect baculoviruses. SfIAP contains two baculovirus IAP repeat domains followed by a RING domain. SfIAP has striking amino acid sequence similarity with baculoviral IAPs, CpIAP and OpIAP, suggesting that baculoviral IAPs may be host-derived genes. SfIAP and baculoviral CpIAP inhibit Bax but not Fas-induced apoptosis in human cells. Their apoptosis-suppressing activity in mammalian cells requires both baculovirus IAP repeat and RING domains. Further biochemical data suggest that SfIAP and CpIAP are specific inhibitors of mammalian caspase-9, the pinnacle caspase in the mitochondria/cytochrome c pathway for apoptosis, but are not inhibitors of downstream caspase-3 and caspase-7. Thus the mechanisms by which insect and baculoviral IAPs suppress apoptosis may involve inhibition of an insect caspase-9 homologue. Peptides representing the IAP-binding domain of the Drosophila cell death protein Grim abrogated human caspase suppression by SfIAP and CpIAP, implying evolutionary conservation of the functions of IAPs and their inhibitors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The expression of DCC (deleted in colorectal cancer) is often markedly reduced in colorectal and other cancers. However, the rarity of point mutations identified in DCC coding sequences and the lack of a tumor predisposition phenotype in DCC hemizygous mice have raised questions about its role as a tumor suppressor. DCC also mediates axon guidance and functions as a dependence receptor; such receptors create cellular states of dependence on their respective ligands by inducing apoptosis when unoccupied by ligand. We now show that DCC drives cell death independently of both the mitochondria-dependent pathway and the death receptor/caspase-8 pathway. Moreover, we demonstrate that DCC interacts with both caspase-3 and caspase-9 and drives the activation of caspase-3 through caspase-9 without a requirement for cytochrome c or Apaf-1. Hence, DCC defines an additional pathway for the apoptosome-independent caspase activation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Caspase-3 is synthesized as a dormant proenzyme and is maintained in an inactive conformation by an Asp-Asp-Asp “safety-catch” regulatory tripeptide contained within a flexible loop near the large-subunit/small-subunit junction. Removal of this “safety catch” results in substantially enhanced autocatalytic maturation as well as increased vulnerability to proteolytic activation by upstream proteases in the apoptotic pathway such as caspase-9 and granzyme B. The safety catch functions through multiple ionic interactions that are disrupted by acidification, which occurs in the cytosol of cells during the early stages of apoptosis. We propose that the caspase-3 safety catch is a key regulatory checkpoint in the apoptotic cascade that regulates terminal events in the caspase cascade by modulating the triggering of caspase-3 activation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interface between apoptosis (programmed cell death) and the cell cycle is essential to preserve homeostasis and genomic integrity. Here, we show that survivin, an inhibitor of apoptosis over-expressed in cancer, physically associates with the cyclin-dependent kinase p34cdc2 on the mitotic apparatus, and is phosphorylated on Thr34 by p34cdc2-cyclin B1, in vitro and in vivo. Loss of phosphorylation on Thr34 resulted in dissociation of a survivin-caspase-9 complex on the mitotic apparatus, and caspase-9-dependent apoptosis of cells traversing mitosis. These data identify survivin as a mitotic substrate of p34cdc2-cyclin B1 and suggest that survivin phosphorylation on Thr34 may be required to preserve cell viability at cell division. Manipulation of this pathway may facilitate the elimination of cancer cells at mitosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Caspases are key mediators in liver inflammation and apoptosis. In the present study we provide evidence that a nitric oxide (NO) derivative of ursodeoxycholic acid (UDCA), NCX-1000 ([2-(acetyloxy)benzoic acid 3-(nitrooxymethyl)phenyl ester]), protects against liver damage in murine models of autoimmune hepatitis induced by i.v. injection of Con A or a Fas agonistic antibody, Jo2. Con A administration causes CD4+ T lymphocytes to accumulate in the liver and up-regulates FasL expression, resulting in FasL-mediated cytotoxicity. Cotreating mice with NCX-1000, but not with UDCA, protected against liver damage induced by Con A and Jo2, inhibited IL-1β, IL-18, and IFN-γ release and caspase 3, 8, and 9 activation. Studies on HepG2 cells demonstrated that NCX-1000, but not UDCA, directly prevented multiple caspase activation induced by Jo2. Incubating HepG2 cells with NCX-1000 resulted in intracellular NO formation and a DTT-reversible inhibition of proapoptotic caspases, suggesting that cysteine S-nitrosylation was the main mechanism responsible for caspase inhibition. Collectively, these data suggest that NCX-1000 protects against T helper 1-mediated liver injury by inhibiting both the proapoptotic and the proinflammatory branches of the caspase superfamily.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The inhibitor of apoptosis (IAP) family of anti-apoptotic proteins regulate programmed cell death and/or apoptosis. One such protein, X-linked IAP (XIAP), inhibits the activity of the cell death proteases, caspase-3, -7, and -9. In this study, using constitutively active mutants of caspase-3, we found that XIAP promotes the degradation of active-form caspase-3, but not procaspase-3, in living cells. The XIAP mutants, which cannot interact with caspase-3, had little or no activity of promoting the degradation of caspase-3. RING finger mutants of XIAP also could not promote the degradation of caspase-3. A proteasome inhibitor suppressed the degradation of caspase-3 by XIAP, suggesting the involvement of a ubiquitin-proteasome pathway in the degradation. An in vitro ubiquitination assay revealed that XIAP acts as a ubiquitin-protein ligase for caspase-3. Caspase-3 was ubiquitinated in the presence of XIAP in living cells. Both the association of XIAP with caspase-3 and the RING finger domain of XIAP were essential for ubiquitination. Finally, the RING finger mutants of XIAP were less effective than wild-type XIAP at preventing apoptosis induced by overexpression of either active-form caspase-3 or Fas. These results demonstrate that the ubiquitin-protein ligase activity of XIAP promotes the degradation of caspase-3, which enhances its anti-apoptotic effect.