21 resultados para Caspase 3

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neurotoxicity induced by overstimulation of N-methyl-d-aspartate (NMDA) receptors is due, in part, to a sustained rise in intracellular Ca2+; however, little is known about the ensuing intracellular events that ultimately result in cell death. Here we show that overstimulation of NMDA receptors by relatively low concentrations of glutamate induces apoptosis of cultured cerebellar granule neurons (CGNs) and that CGNs do not require new RNA or protein synthesis. Glutamate-induced apoptosis of CGNs is, however, associated with a concentration- and time-dependent activation of the interleukin 1β-converting enzyme (ICE)/CED-3-related protease, CPP32/Yama/apopain (now designated caspase 3). Further, the time course of caspase 3 activation after glutamate exposure of CGNs parallels the development of apoptosis. Moreover, glutamate-induced apoptosis of CGNs is almost completely blocked by the selective cell permeable tetrapeptide inhibitor of caspase 3, Ac-DEVD-CHO but not by the ICE (caspase 1) inhibitor, Ac-YVAD-CHO. Western blots of cytosolic extracts from glutamate-exposed CGNs reveal both cleavage of the caspase 3 substrate, poly(ADP-ribose) polymerase, as well as proteolytic processing of pro-caspase 3 to active subunits. Our data demonstrate that glutamate-induced apoptosis of CGNs is mediated by a posttranslational activation of the ICE/CED-3-related cysteine protease caspase 3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both caspase-1- and caspase-3-like activities are required for Fas-mediated apoptosis. However, the role of caspase-1 and caspase-3 in mediating Fas-induced cell death is not clear. We assessed the contributions of these caspases to Fas signaling in hepatocyte cell death in vitro. Although wild-type, caspase-1−/−, and caspase-3−/− hepatocytes were killed at a similar rate when cocultured with FasL expressing NIH 3T3 cells, caspase-3−/− hepatocytes displayed drastically different morphological changes as well as significantly delayed DNA fragmentation. For both wild-type and caspase-1−/− apoptotic hepatocytes, typical apoptotic features such as cytoplasmic blebbing and nuclear fragmentation were seen within 6 hr, but neither event was observed for caspase-3−/− hepatocytes. We extended these studies to thymocytes and found that apoptotic caspase-3−/− thymocytes exhibited similar “abnormal” morphological changes and delayed DNA fragmentation observed in hepatocytes. Furthermore, the cleavage of various caspase substrates implicated in mediating apoptotic events, including gelsolin, fodrin, laminB, and DFF45/ICAD, was delayed or absent. The altered cleavage of these key substrates is likely responsible for the aberrant apoptosis observed in both hepatocytes and thymocytes deficient in caspase-3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The number of neurons in the mammalian brain is determined by a balance between cell proliferation and programmed cell death. Recent studies indicated that Bcl-XL prevents, whereas Caspase-3 mediates, cell death in the developing nervous system, but whether Bcl-XL directly blocks the apoptotic function of Caspase-3 in vivo is not known. To examine this question, we generated bcl-x/caspase-3 double mutants and found that caspase-3 deficiency abrogated the increased apoptosis of postmitotic neurons but not the increased hematopoietic cell death and embryonic lethality caused by the bcl-x mutation. In contrast, caspase-3, but not bcl-x, deficiency changed the normal incidence of neuronal progenitor cell apoptosis, consistent with the lack of expression of Bcl-XL in the proliferative population of the embryonic cortex. Thus, although Caspase-3 is epistatically downstream to Bcl-XL in postmitotic neurons, it independently regulates apoptosis of neuronal founder cells. Taken together, these results establish a role of programmed cell death in regulating the size of progenitor population in the central nervous system, a function that is distinct from the classic role of cell death in matching postmitotic neuronal population with postsynaptic targets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Caspase-3 knockout mice exhibit thickening of the internal granule cell layer of the cerebellum. Concurrently, it has been shown that intracerebral injection of pituitary adenylate cyclase-activating polypeptide (PACAP) induces a transient increase of the thickness of the cerebellar cortex. In the present study, we have investigated the possible effect of PACAP on caspase activity in cultured cerebellar granule cells from 8-day-old rat. Incubation of granule neurons with PACAP for 24 h promoted cell survival and prevented DNA fragmentation. Exposure of cerebellar granule cells to the specific caspase-3 inhibitor N-benzyloxycarbonyl-Asp-Glu-Val-Asp fluoromethylketone (Z-DEVD-FMK) for 24 h markedly enhanced cell survival and inhibited apoptotic cell death. Time-course studies revealed that PACAP causes a prolonged inhibition of caspase-3 activity without affecting caspase-1. Administration of graded concentrations of PACAP for 3 h induced a dose-dependent inhibition of caspase-3 activity. Incubation of granule cells with both dibutyryl-cAMP (dbcAMP) and phorbol 12-myristate 13-acetate (PMA) mimicked the inhibitory effect of PACAP on caspase-3. Cotreatment of cultured neurons with the protein kinase A inhibitor H89 and the protein kinase C inhibitor chelerythrine abrogated the effect of PACAP on caspase-3 activity. In contrast, the ERK kinase inhibitor U0126 did not affect the action of PACAP on caspase-3 activity. These data demonstrate that PACAP prevents cerebellar granule neurons from apoptotic cell death through a protein kinase A- and protein kinase C-dependent inhibition of caspase-3 activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Farnesyltransferase inhibitors (FTIs) represent a new class of anticancer drugs that show promise in blocking the growth of tumors. Here, we report that FTIs are capable of inducing apoptosis of transformed but not untransformed cells. Treatment of v-K-ras-transformed normal rat kidney (KNRK) cells with FTIs leads to the induction of apoptotic cell morphology, chromatin condensation and DNA fragmentation. In addition, fluorescence-activated cell sorter analysis of FTI-treated KNRK cells shows a sub-G1 apoptotic peak (chromosome content of <2 N). This FTI-induced apoptosis is evident only when the cells are grown in low serum conditions (0.1% fetal calf serum) and is observed selectively with transformed KNRK cells and not with untransformed NRK cells. Further analysis of the mechanism underlying this apoptosis has shown that FTI treatment of KNRK cells results in the activation of caspase 3 but not caspase 1. Moreover, the addition of Z-DEVD-fmk, an agent that interferes with caspase 3 activity, can inhibit FTI-induced apoptosis in a dose-dependent manner. Introduction of the CASP-3 gene into MCF7 cells, which lack caspase 3 activity, results in a significant increase of FTI-induced apoptosis. Furthermore, FTI induces the release of cytochrome c into the cytosol. This release is an important feature of caspase 3-mediated apoptosis. These results suggest that FTIs induce apoptosis through the release of cytochrome c from the mitochondria resulting in caspase 3 activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Caspase-3 is synthesized as a dormant proenzyme and is maintained in an inactive conformation by an Asp-Asp-Asp “safety-catch” regulatory tripeptide contained within a flexible loop near the large-subunit/small-subunit junction. Removal of this “safety catch” results in substantially enhanced autocatalytic maturation as well as increased vulnerability to proteolytic activation by upstream proteases in the apoptotic pathway such as caspase-9 and granzyme B. The safety catch functions through multiple ionic interactions that are disrupted by acidification, which occurs in the cytosol of cells during the early stages of apoptosis. We propose that the caspase-3 safety catch is a key regulatory checkpoint in the apoptotic cascade that regulates terminal events in the caspase cascade by modulating the triggering of caspase-3 activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inhibitor of apoptosis (IAP) family of anti-apoptotic proteins regulate programmed cell death and/or apoptosis. One such protein, X-linked IAP (XIAP), inhibits the activity of the cell death proteases, caspase-3, -7, and -9. In this study, using constitutively active mutants of caspase-3, we found that XIAP promotes the degradation of active-form caspase-3, but not procaspase-3, in living cells. The XIAP mutants, which cannot interact with caspase-3, had little or no activity of promoting the degradation of caspase-3. RING finger mutants of XIAP also could not promote the degradation of caspase-3. A proteasome inhibitor suppressed the degradation of caspase-3 by XIAP, suggesting the involvement of a ubiquitin-proteasome pathway in the degradation. An in vitro ubiquitination assay revealed that XIAP acts as a ubiquitin-protein ligase for caspase-3. Caspase-3 was ubiquitinated in the presence of XIAP in living cells. Both the association of XIAP with caspase-3 and the RING finger domain of XIAP were essential for ubiquitination. Finally, the RING finger mutants of XIAP were less effective than wild-type XIAP at preventing apoptosis induced by overexpression of either active-form caspase-3 or Fas. These results demonstrate that the ubiquitin-protein ligase activity of XIAP promotes the degradation of caspase-3, which enhances its anti-apoptotic effect.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The activation of cyclin-dependent kinases (cdks) has been implicated in apoptosis induced by various stimuli. We find that the Fas-induced activation of cdc2 and cdk2 in Jurkat cells is not dependent on protein synthesis, which is shut down very early during apoptosis before caspase-3 activation. Instead, activation of these kinases seems to result from both a rapid cleavage of Wee1 (an inhibitory kinase of cdc2 and cdk2) and inactivation of anaphase-promoting complex (the specific system for cyclin degradation), in which CDC27 homolog is cleaved during apoptosis. Both Wee1 and CDC27 are shown to be substrates of the caspase-3-like protease. Although cdk activities are elevated during Fas-induced apoptosis in Jurkat cells, general activation of the mitotic processes does not occur. Our results do not support the idea that apoptosis is simply an aberrant mitosis but, instead, suggest that a subset of mitotic mechanisms plays an important role in apoptosis through elevated cdk activities.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Multidrug resistance mediated by the drug efflux protein, P-glycoprotein (P-gp), is one mechanism that tumor cells use to escape death induced by chemotherapeutic agents. However, the mechanism by which P-gp confers resistance to a large variety of structurally diverse molecules has remained elusive. In this study, classical multidrug resistant human CEM and K562 tumor cell lines expressing high levels of P-gp were less sensitive to multiple forms of caspase-dependent cell death, including that mediated by cytotoxic drugs and ligation of Fas. The DNA fragmentation and membrane damage inflicted by these stimuli were defined as caspase dependent by various soluble peptide fluoromethylketone caspase inhibitors. Inhibition of P-gp function by the anti-P-gp mAb MRK-16 or verapamil could reverse resistance to these forms of cell death. Inhibition of P-gp function also enhanced drug or Fas-mediated activation of caspase-3 in drug-resistant CEM cells. By contrast, caspase-independent cell death events in the same cells, including those mediated by pore-forming proteins or intact NK cells, were not affected by P-gp expression. These observations suggest that, in addition to effluxing drugs, P-gp may play a specific role in regulating some caspase-dependent apoptotic pathways.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The cytoplasmic region of Fas, a mammalian death factor receptor, shares a limited homology with reaper, an apoptosis-inducing protein in Drosophila. Expression of either the Fas cytoplasmic region (FasC) or of reaper in Drosophila cells caused cell death. The death process induced by FasC or reaper was inhibited by crmA or p35, suggesting that its death process is mediated by caspase-like proteases. Both Ac-YVAD aldehyde and Ac-DEVD aldehyde, specific inhibitors of caspase 1- and caspase 3-like proteases, respectively, inhibited the FasC-induced death of Drosophila cells. However, the cell death induced by reaper was inhibited by Ac-DEVD aldehyde, but not by Ac-YVAD aldehyde. A caspase 1-like protease activity that preferentially recognizes the YVAD sequence gradually increased in the cytosolic fraction of the FasC-activated cells, whereas the caspase 3-like protease activity recognizing the DEVD sequence was observed in the reaper-activated cells. Partial purification and biochemical characterization of the proteases indicated that there are at least three distinct caspase-like proteases in Drosophila cells, which are differentially activated by FasC and reaper. The conservation of the Fas-death signaling pathway in Drosophila cells, which is distinct from that for reaper, may indicate that cell death in Drosophila is controlled not only by the reaper suicide gene, but also by a Fas-like killer gene.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tumor necrosis factor (TNF)-induced apoptosis is mediated by caspases, which are cysteine proteases related to interleukin 1β-converting enzyme. We report here that TNF-induced activation of caspases results in the cleavage and activation of cytosolic phospholipase A2 (cPLA2) and that activated cPLA2 contributes to apoptosis. Inhibition of caspases by expression of a cowpox virus-derived inhibitor, CrmA, or by a specific tetrapeptide inhibitor of CPP32/caspase-3, acetyl-Asp-Glu-Val-Asp-aldehyde (Ac-DEVD-CHO), inhibited TNF-induced activation of cPLA2 and apoptosis. TNF-induced activation of cPLA2 was accompanied by a cleavage of the 100-kDa cPLA2 to a 70-kDa proteolytic fragment. This cleavage was inhibited by Ac-DEVD-CHO in a similar manner as that of poly(ADP)ribose polymerase, a known substrate of CPP32/caspase-3. Interestingly, specific inhibition of cPLA2 enzyme activity by arachidonyl trifluoromethylketone (AACOCF3) partially inhibited TNF-induced apoptosis without inhibition of caspase activity. Thus, our results suggest a novel caspase-dependent activation pathway for cPLA2 during apoptosis and identify cPLA2 as a mediator of TNF-induced cell death acting downstream of caspases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We cloned a new inhibitor of apoptosis protein (IAP) homolog, SfIAP, from Spodoptera frugiperda Sf-21 cells, a host of insect baculoviruses. SfIAP contains two baculovirus IAP repeat domains followed by a RING domain. SfIAP has striking amino acid sequence similarity with baculoviral IAPs, CpIAP and OpIAP, suggesting that baculoviral IAPs may be host-derived genes. SfIAP and baculoviral CpIAP inhibit Bax but not Fas-induced apoptosis in human cells. Their apoptosis-suppressing activity in mammalian cells requires both baculovirus IAP repeat and RING domains. Further biochemical data suggest that SfIAP and CpIAP are specific inhibitors of mammalian caspase-9, the pinnacle caspase in the mitochondria/cytochrome c pathway for apoptosis, but are not inhibitors of downstream caspase-3 and caspase-7. Thus the mechanisms by which insect and baculoviral IAPs suppress apoptosis may involve inhibition of an insect caspase-9 homologue. Peptides representing the IAP-binding domain of the Drosophila cell death protein Grim abrogated human caspase suppression by SfIAP and CpIAP, implying evolutionary conservation of the functions of IAPs and their inhibitors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have investigated the ability of Sf-caspase-1 and two mammalian caspases, caspase-1 and caspase-3, to induce apoptosis in Spodoptera frugiperda Sf-21 insect cells. While the transient expression of the pro-Sf-caspase-1 did not induce apoptosis, expression of the pro-domain deleted form, p31, or coexpression of the two subunits of mature Sf-caspase-1, p19 and p12, induced apoptosis in Sf-21 cells. The behavior of Sf-caspase-1 resembled that of the closely related mammalian caspase, caspase-3, and contrasted with that of the mammalian caspase-1, the pro-form of which was active in inducing apoptosis in Sf-21 cells. The baculovirus caspase inhibitor P35 blocked apoptosis induced by active forms of all three caspases. In contrast, members of the baculovirus inhibitor of apoptosis (IAP) family failed to block active caspase-induced apoptosis. However, during viral infection, expression of OpIAP or CpIAP blocked the activation of pro-Sf-caspase-1 and the associated induction of apoptosis. Thus, the mechanism by which baculovirus IAPs inhibit apoptosis is distinct from the mechanism by which P35 blocks apoptosis and involves inhibition of the activation of pro-caspases like Sf-caspase-1.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Caspases are key mediators in liver inflammation and apoptosis. In the present study we provide evidence that a nitric oxide (NO) derivative of ursodeoxycholic acid (UDCA), NCX-1000 ([2-(acetyloxy)benzoic acid 3-(nitrooxymethyl)phenyl ester]), protects against liver damage in murine models of autoimmune hepatitis induced by i.v. injection of Con A or a Fas agonistic antibody, Jo2. Con A administration causes CD4+ T lymphocytes to accumulate in the liver and up-regulates FasL expression, resulting in FasL-mediated cytotoxicity. Cotreating mice with NCX-1000, but not with UDCA, protected against liver damage induced by Con A and Jo2, inhibited IL-1β, IL-18, and IFN-γ release and caspase 3, 8, and 9 activation. Studies on HepG2 cells demonstrated that NCX-1000, but not UDCA, directly prevented multiple caspase activation induced by Jo2. Incubating HepG2 cells with NCX-1000 resulted in intracellular NO formation and a DTT-reversible inhibition of proapoptotic caspases, suggesting that cysteine S-nitrosylation was the main mechanism responsible for caspase inhibition. Collectively, these data suggest that NCX-1000 protects against T helper 1-mediated liver injury by inhibiting both the proapoptotic and the proinflammatory branches of the caspase superfamily.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The expression of DCC (deleted in colorectal cancer) is often markedly reduced in colorectal and other cancers. However, the rarity of point mutations identified in DCC coding sequences and the lack of a tumor predisposition phenotype in DCC hemizygous mice have raised questions about its role as a tumor suppressor. DCC also mediates axon guidance and functions as a dependence receptor; such receptors create cellular states of dependence on their respective ligands by inducing apoptosis when unoccupied by ligand. We now show that DCC drives cell death independently of both the mitochondria-dependent pathway and the death receptor/caspase-8 pathway. Moreover, we demonstrate that DCC interacts with both caspase-3 and caspase-9 and drives the activation of caspase-3 through caspase-9 without a requirement for cytochrome c or Apaf-1. Hence, DCC defines an additional pathway for the apoptosome-independent caspase activation.