2 resultados para Carver
em National Center for Biotechnology Information - NCBI
Resumo:
Leaves of two barley (Hordeum vulgare L.) isolines, Alg-R, which has the dominant Mla1 allele conferring hypersensitive race-specific resistance to avirulent races of Blumeria graminis, and Alg-S, which has the recessive mla1 allele for susceptibility to attack, were inoculated with B. graminis f. sp. hordei. Total leaf and apoplastic antioxidants were measured 24 h after inoculation when maximum numbers of attacked cells showed hypersensitive death in Alg-R. Cytoplasmic contamination of the apoplastic extracts, judged by the marker enzyme glucose-6-phosphate dehydrogenase, was very low (less than 2%) even in inoculated plants. Dehydroascorbate, glutathione, superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, monodehydroascorbate reductase, and dehydroascorbate reductase were present in the apoplast. Inoculation had no effect on the total foliar ascorbate pool size or the redox state. The glutathione content of Alg-S leaves and apoplast decreased, whereas that of Alg-R leaves and apoplast increased after pathogen attack, but the redox state was unchanged in both cases. Large increases in foliar catalase activity were observed in Alg-S but not in Alg-R leaves. Pathogen-induced increases in the apoplastic antioxidant enzyme activities were observed. We conclude that sustained oxidation does not occur and that differential strategies of antioxidant response in Alg-S and Alg-R may contribute to pathogen sensitivity.
Resumo:
Microbes whose genomes are encoded by DNA and for which adequate information is available display similar genomic mutation rates (average 0.0034 mutations per chromosome replication, range 0.0025 to 0.0046). However, this value currently is based on only a few well characterized microbes reproducing within a narrow range of environmental conditions. In particular, no genomic mutation rate has been determined either for a microbe whose natural growth conditions may extensively damage DNA or for any member of the archaea, a prokaryotic lineage deeply diverged from both bacteria and eukaryotes. Both of these conditions are met by the extreme thermoacidophile Sulfolobus acidocaldarius. We determined the genomic mutation rate for this species when growing at pH 3.5 and 75°C based on the rate of forward mutation at the pyrE gene and the nucleotide changes identified in 101 independent mutants. The observed value of about 0.0018 extends the range of DNA-based microbes with rates close to the standard rate simultaneously to an archaeon and to an extremophile whose cytoplasmic pH and normal growth temperature greatly accelerate the spontaneous decomposition of DNA. The mutations include base pair substitutions (BPSs) and additions and deletions of various sizes, but the S. acidocaldarius spectrum differs from those of other DNA-based organisms in being relatively poor in BPSs. The paucity of BPSs cannot yet be explained by known properties of DNA replication or repair enzymes of Sulfolobus spp. It suggests, however, that molecular evolution per genome replication may proceed more slowly in S. acidocaldarius than in other DNA-based organisms examined to date.