30 resultados para Carrier-waves

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In higher plants changes and oscillations in cytosolic free Ca2+ concentration ([Ca2+]i) are central to hormonal physiology, including that of abscisic acid (ABA), which signals conditions of water stress and alters ion channel activities in guard cells of higher-plant leaves. Such changes in [Ca2+]i are thought to encode for cellular responses to different stimuli, but their origins and functions are poorly understood. Because transients and oscillations in membrane voltage also occur in guard cells and are elicited by hormones, including ABA, we suspected a coupling of [Ca2+]i to voltage and its interaction with ABA. We recorded [Ca2+]i by Fura2 fluorescence ratio imaging and photometry while bringing membrane voltage under experimental control with a two-electrode voltage clamp in intact Vicia guard cells. Free-running oscillations between voltages near −50 mV and −200 mV were associated with oscillations in [Ca2+]i, and, under voltage clamp, equivalent membrane hyperpolarizations caused [Ca2+]i to increase, often in excess of 1 μM, from resting values near 100 nM. Image analysis showed that the voltage stimulus evoked a wave of high [Ca2+]i that spread centripetally from the peripheral cytoplasm within 5–10 s and relaxed over 40–60 s thereafter. The [Ca2+]i increases showed a voltage threshold near −120 mV and were sensitive to external Ca2+ concentration. Substituting Mn2+ for Ca2+ to quench Fura2 fluorescence showed that membrane hyperpolarization triggered a divalent influx. ABA affected the voltage threshold for the [Ca2+]i rise, its amplitude, and its duration. In turn, membrane voltage determined the ability of ABA to raise [Ca2+]i. These results demonstrate a capacity for voltage to evoke [Ca2+]i increases, they point to a dual interaction with ABA in triggering and propagating [Ca2+]i increases, and they implicate a role for voltage in “conditioning” [Ca2+]i signals that regulate ion channels for stomatal function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cDNA from a novel Ca2+-dependent member of the mitochondrial solute carrier superfamily was isolated from a rabbit small intestinal cDNA library. The full-length cDNA clone was 3,298 nt long and coded for a protein of 475 amino acids, with four elongation factor-hand motifs located in the N-terminal half of the molecule. The 25-kDa N-terminal polypeptide was expressed in Escherichia coli, and it was demonstrated that it bound Ca2+, undergoing a reversible and specific conformational change as a result. The conformation of the polypeptide was sensitive to Ca2+ which was bound with high affinity (Kd ≈ 0.37 μM), the apparent Hill coefficient for Ca2+-induced changes being about 2.0. The deduced amino acid sequence of the C-terminal half of the molecule revealed 78% homology to Grave disease carrier protein and 67% homology to human ADP/ATP translocase; this sequence homology identified the protein as a new member of the mitochondrial transporter superfamily. Northern blot analysis revealed the presence of a single transcript of about 3,500 bases, and low expression of the transporter could be detected in the kidney but none in the liver. The main site of expression was the colon with smaller amounts found in the small intestine proximal to the ileum. Immunoelectron microscopy localized the transporter in the peroxisome, although a minor fraction was found in the mitochondria. The Ca2+ binding N-terminal half of the transporter faces the cytosol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whereas it is relatively easy to account for the formation of concentric (target) waves of cAMP in the course of Dictyostelium discoideum aggregation after starvation, the origin of spiral waves remains obscure. We investigate a physiologically plausible mechanism for the spontaneous formation of spiral waves of cAMP in D. discoideum. The scenario relies on the developmental path associated with the continuous changes in the activity of enzymes such as adenylate cyclase and phosphodiesterase observed during the hours that follow starvation. These changes bring the cells successively from a nonexcitable state to an excitable state in which they relay suprathreshold cAMP pulses, and then to autonomous oscillations of cAMP, before the system returns to an excitable state. By analyzing a model for cAMP signaling based on receptor desensitization, we show that the desynchronization of cells on this developmental path triggers the formation of fully developed spirals of cAMP. Developmental paths that do not correspond to the sequence of dynamic transitions no relay-relay-oscillations-relay are less able or fail to give rise to the formation of spirals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To develop a strategy that promotes efficient antiviral immunity, hybrid virus-like particles (VLP) were prepared by self-assembly of the modified porcine parvovirus VP2 capsid protein carrying a CD8+ T cell epitope from the lymphocytic choriomeningitis virus nucleoprotein. Immunization of mice with these hybrid pseudoparticles, without adjuvant, induced strong cytotoxic T lymphocyte (CTL) responses against both peptide-coated- or virus-infected-target cells. This CD8+ class I-restricted cytotoxic activity persisted in vivo for at least 9 months. Furthermore, the hybrid parvovirus-like particles were able to induce a complete protection of mice against a lethal lymphocytic choriomeningitis virus infection. To our knowledge, this study represents the first demonstration that hybrid nonreplicative VLP carrying a single viral CTL epitope can induce protection against a viral lethal challenge, in the absence of any adjuvant. These recombinant particles containing a single type of protein are easily produced by the baculovirus expression system and, therefore, represent a promising and safe strategy to induce strong CTL responses for the elimination of virus-infected cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The computations involved in the processing of a visual scene invariably involve the interactions among neurons throughout all of visual cortex. One hypothesis is that the timing of neuronal activity, as well as the amplitude of activity, provides a means to encode features of objects. The experimental data from studies on cat [Gray, C. M., Konig, P., Engel, A. K. & Singer, W. (1989) Nature (London) 338, 334–337] support a view in which only synchronous (no phase lags) activity carries information about the visual scene. In contrast, theoretical studies suggest, on the one hand, the utility of multiple phases within a population of neurons as a means to encode independent visual features and, on the other hand, the likely existence of timing differences solely on the basis of network dynamics. Here we use widefield imaging in conjunction with voltage-sensitive dyes to record electrical activity from the virtually intact, unanesthetized turtle brain. Our data consist of single-trial measurements. We analyze our data in the frequency domain to isolate coherent events that lie in different frequency bands. Low frequency oscillations (<5 Hz) are seen in both ongoing activity and activity induced by visual stimuli. These oscillations propagate parallel to the afferent input. Higher frequency activity, with spectral peaks near 10 and 20 Hz, is seen solely in response to stimulation. This activity consists of plane waves and spiral-like waves, as well as more complex patterns. The plane waves have an average phase gradient of ≈π/2 radians/mm and propagate orthogonally to the low frequency waves. Our results show that large-scale differences in neuronal timing are present and persistent during visual processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Focally evoked calcium waves in astrocyte cultures have been thought to propagate by gap-junction-mediated intercellular passage of chemical signal(s). In contrast to this mechanism we observed isolated astrocytes, which had no physical contact with other astrocytes in the culture, participating in a calcium wave. This observation requires an extracellular route of astrocyte signaling. To directly test for extracellular signaling we made cell-free lanes 10–300 μm wide in confluent cultures by deleting astrocytes with a glass pipette. After 4–8 hr of recovery, regions of confluent astrocytes separated by lanes devoid of cells were easily located. Electrical stimulation was used to initiate calcium waves. Waves crossed narrow (<120 μm) cell-free lanes in 15 of 36 cases, but failed to cross lanes wider than 120 μm in eight of eight cases. The probability of crossing narrow lanes was not correlated with the distance from the stimulation site, suggesting that cells along the path of the calcium wave release the extracellular messenger(s). Calculated velocity across the acellular lanes was not significantly different from velocity through regions of confluent astrocytes. Focal superfusion altered both the extent and the direction of calcium waves in confluent regions. These data indicate that extracellular signals may play a role in astrocyte–astrocyte communication in situ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Auxins are plant hormones that mediate many aspects of plant growth and development. In higher plants, auxins are polarly transported from sites of synthesis in the shoot apex to their sites of action in the basal regions of shoots and in roots. Polar auxin transport is an important aspect of auxin functions and is mediated by cellular influx and efflux carriers. Little is known about the molecular identity of its regulatory component, the efflux carrier [Estelle, M. (1996) Current Biol. 6, 1589–1591]. Here we show that mutations in the Arabidopsis thaliana AGRAVITROPIC 1 (AGR1) gene involved in root gravitropism confer increased root-growth sensitivity to auxin and decreased sensitivity to ethylene and an auxin transport inhibitor, and cause retention of exogenously added auxin in root tip cells. We used positional cloning to show that AGR1 encodes a putative transmembrane protein whose amino acid sequence shares homologies with bacterial transporters. When expressed in Saccharomyces cerevisiae, AGR1 promotes an increased efflux of radiolabeled IAA from the cells and confers increased resistance to fluoro-IAA, a toxic IAA-derived compound. AGR1 transcripts were localized to the root distal elongation zone, a region undergoing a curvature response upon gravistimulation. We have identified several AGR1-related genes in Arabidopsis, suggesting a global role of this gene family in the control of auxin-regulated growth and developmental processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cyclodextrin dimer has been synthesized with two β-cyclodextrins linked by a flexible chain containing a carbon–carbon double bond. This dimer binds and solubilizes a phthalocyanine-based photosensitizer that generates singlet oxygen on irradiation. When the complex is irradiated, the singlet oxygen cleaves the carbon–carbon link, and the cyclodextrins are released, liberating the photosensitizer into the light path. Ideas about how this phenomenon could be used to make photodynamic tumor therapy into a more selective process are described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Secretory carrier membrane proteins (SCAMPs) are ubiquitously expressed proteins of post-Golgi vesicles. In the presence of the tyrosine phosphatase inhibitor vanadate, or after overexpression in Chinese hamster ovary (CHO) cells, SCAMP1 and SCAMP3 are phosphorylated selectively on tyrosine residue(s). Phosphorylation is reversible after vanadate washout in situ or when isolated SCAMP3 is incubated with the recombinant tyrosine phosphatase PTP1B. Vanadate also causes the partial accumulation of SCAMP3, but not SCAMP1, in “patches” at or near the cell surface. A search for SCAMP kinase activities has shown that SCAMPs 1 and 3, but not SCAMP2, are tyrosine phosphorylated in EGF-stimulated murine fibroblasts overexpressing the EGF receptor (EGFR). EGF catalyzes the progressive phosphorylation of the SCAMPs up to 1 h poststimulation and may enhance colocalization of the EGFR and SCAMP3 within the cell interior. EGF also induces SCAMP–EGFR association, as detected by coimmunoprecipitation, and phosphorylation of SCAMP3 is stimulated by the EGFR in vitro. These results suggest that phosphorylation of SCAMPs, either directly or indirectly, may be functionally linked to the internalization/down-regulation of the EGFR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two major routes of preprotein targeting into mitochondria are known. Preproteins carrying amino-terminal signals mainly use Tom20, the general import pore (GIP) complex and the Tim23–Tim17 complex. Preproteins with internal signals such as inner membrane carriers use Tom70, the GIP complex, and the special Tim pathway, involving small Tims of the intermembrane space and Tim22–Tim54 of the inner membrane. Little is known about the biogenesis and assembly of the Tim proteins of this carrier pathway. We report that import of the preprotein of Tim22 requires Tom20, although it uses the carrier Tim route. In contrast, the preprotein of Tim54 mainly uses Tom70, yet it follows the Tim23–Tim17 pathway. The positively charged amino-terminal region of Tim54 is required for membrane translocation but not for targeting to Tom70. In addition, we identify two novel homologues of the small Tim proteins and show that targeting of the small Tims follows a third new route where surface receptors are dispensable, yet Tom5 of the GIP complex is crucial. We conclude that the biogenesis of Tim proteins of the carrier pathway cannot be described by either one of the two major import routes, but involves new types of import pathways composed of various features of the hitherto known routes, including crossing over at the level of the GIP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When Ca2+ is released from internal stores in living cells, the resulting wave of increased concentration can travel without deformation (continuous propagation) or with burst-like behavior (saltatory propagation). We analyze the “fire–diffuse–fire” model in order to illuminate the differences between these two modes of propagation. We show that the Ca2+ release wave in immature Xenopus oocytes and cardiac myocytes is saltatory, whereas the fertilization wave in the mature oocyte is continuous.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data from three previous experiments were analyzed to test the hypothesis that brain waves of spoken or written words can be represented by the superposition of a few sine waves. First, we averaged the data over trials and a set of subjects, and, in one case, over experimental conditions as well. Next we applied a Fourier transform to the averaged data and selected those frequencies with high energy, in no case more than nine in number. The superpositions of these selected sine waves were taken as prototypes. The averaged unfiltered data were the test samples. The prototypes were used to classify the test samples according to a least-squares criterion of fit. The results were seven of seven correct classifications for the first experiment using only three frequencies, six of eight for the second experiment using nine frequencies, and eight of eight for the third experiment using five frequencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Starving Dictyostelium amoebae emit pulses of the chemoattractant cAMP that are relayed from cell to cell as circular and spiral waves. We have recently modeled spiral wave formation in Dictyostelium. Our model suggests that a secreted protein inhibitor of an extracellular cAMP phosphodiesterase selects for spirals. Herein we test the essential features of this prediction by comparing wave propagation in wild type and inhibitor mutants. We find that mutants rarely form spirals. The territory size of mutant strains is approximately 50 times smaller than wild type, and the mature fruiting bodies are smaller but otherwise normal. These results identify a mechanism for selecting one wave symmetry over another in an excitable system and suggest that the phosphodiesterase inhibitor may be under selection because it helps regulate territory size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of DNA in mitochondria requires the uptake of deoxynucleotides into the matrix of the organelle. We have characterized a human cDNA encoding a member of the family of mitochondrial carriers. The protein has been overexpressed in bacteria and reconstituted into phospholipid vesicles where it catalyzed the transport of all four deoxy (d) NDPs, and, less efficiently, the corresponding dNTPs, in exchange for dNDPs, ADP, or ATP. It did not transport dNMPs, NMPs, deoxynucleosides, nucleosides, purines, or pyrimidines. The physiological role of this deoxynucleotide carrier is probably to supply deoxynucleotides to the mitochondrial matrix for conversion to triphosphates and incorporation into mitochondrial DNA. The protein is expressed in all human tissues that were examined except for placenta, in accord with such a central role. The deoxynucleotide carrier also transports dideoxynucleotides efficiently. It is likely to be medically important by providing the means of uptake into mitochondria of nucleoside analogs, leading to the mitochondrial impairment that underlies the toxic side effects of such drugs in the treatment of viral illnesses, including AIDS, and in cancer therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The feasibility of using carbohydrate-based vaccines for the immunotherapy of cancer is being actively explored at the present time. Although a number of clinical trials have already been conducted with glycoconjugate vaccines, the optimal design and composition of the vaccines has yet to be determined. Among the candidate antigens being examined is Lewisy (Ley), a blood group-related antigen that is overexpressed on the majority of human carcinomas. Using Ley as a model for specificity, we have examined the role of epitope clustering, carrier structure, and adjuvant on the immunogenicity of Ley conjugates in mice. A glycolipopeptide containing a cluster of three contiguous Ley-serine epitopes and the Pam3Cys immunostimulating moiety was found to be superior to a similar construct containing only one Ley-serine epitope in eliciting antitumor cell antibodies. Because only IgM antibodies were produced by this vaccine, the effect on immunogenicity of coupling the glycopeptide to keyhole limpet hemocyanin was examined; although both IgM and IgG antibodies were formed, the antibodies reacted only with the immunizing structure. Reexamination of the clustered Ley-serine Pam3Cys conjugate with the adjuvant QS-21 resulted in the identification of both IgG and IgM antibodies reacting with tumor cells, thus demonstrating the feasibility of an entirely synthetic carbohydrate-based anticancer vaccine in an animal model.