3 resultados para Carbon sink

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The quantitative significance of reserves and current assimilates in regrowing tillers of severely defoliated plants of perennial ryegrass (Lolium perenne L.) was assessed by a new approach, comprising 13C/12C and 15N/14N steady-state labeling and separation of sink and source zones. The functionally distinct zones showed large differences in the kinetics of currently assimilated C and N. These are interpreted in terms of ”substrate” and ”tissue” flux among zones and C and N turnover within zones. Tillers refoliated rapidly, although C and N supply was initially decreased. Rapid refoliation was associated with (a) transient depletion of water-soluble carbohydrates and dilution of structural biomass in the immature zone of expanding leaves, (b) rapid transition to current assimilation-derived growth, and (c) rapid reestablishment of a balanced C:N ratio in growth substrate. This balance (C:N, approximately 8.9 [w/w] in new biomass) indicated coregulation of growth by C and N supply and resulted from complementary fluxes of reserve- and current assimilation-derived C and N. Reserves were the dominant N source until approximately 3 d after defoliation. Amino-C constituted approximately 60% of the net influx of reserve C during the first 2 d. Carbohydrate reserves were an insignificant source of C for tiller growth after d 1. We discuss the physiological mechanisms contributing to defoliation tolerance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fiber cell initiation in the epidermal cells of cotton (Gossypium hirsutum L.) ovules represents a unique example of trichome development in higher plants. Little is known about the molecular and metabolic mechanisms controlling this process. Here we report a comparative analysis of a fiberless seed (fls) mutant (lacking fibers) and a normal (FLS) mutant to better understand the initial cytological events in fiber development and to analyze the metabolic changes that are associated with the loss of a major sink for sucrose during cellulose biosynthesis in the mutant seeds. On the day of anthesis (0 DAA), the mutant ovular epidermal cells lacked the typical bud-like projections that are seen in FLS ovules and are required for commitment to the fiber development pathway. Cell-specific gene expression analyses at 0 DAA showed that sucrose synthase (SuSy) RNA and protein were undetectable in fls ovules but were in abundant, steady-state levels in initiating fiber cells of the FLS ovules. Tissue-level analyses of developing seeds 15 to 35 DAA revealed an altered temporal pattern of SuSy expression in the mutant relative to the normal genotype. Whether the altered programming of SuSy expression is the cause or the result of the mutation is unknown. The developing seeds of the fls mutant have also shown several correlated changes that represent altered carbon partitioning in seed coats and cotyledons as compared with the FLS genotype.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three-week-old maize (Zea mays L.) plants were submitted to light/dark cycles and to prolonged darkness to investigate the occurrence of sugar-limitation effects in different parts of the whole plant. Soluble sugars fluctuated with light/dark cycles and dropped sharply during extended darkness. Significant decreases in protein level were observed after prolonged darkness in mature roots, root tips, and young leaves. Glutamine and asparagine (Asn) changed in opposite ways, with Asn increasing in the dark. After prolonged darkness the increase in Asn accounted for most of the nitrogen released by protein breakdown. Using polyclonal antibodies against a vacuolar root protease previously described (F. James, R. Brouquisse, C. Suire, A. Pradet, P. Raymond [1996] Biochem J 320: 283–292) or the 20S proteasome, we showed that the increase in proteolytic activities was related to an enrichment of roots in the vacuolar protease, with no change in the amount of 20S proteasome in either roots or leaves. Our results show that no significant net proteolysis is induced in any part of the plant during normal light/dark cycles, although changes in metabolism and growth appear soon after the beginning of the dark period, and starvation-related proteolysis probably appears in prolonged darkness earlier in sink than in mature tissues.