6 resultados para Car Sharing
em National Center for Biotechnology Information - NCBI
Resumo:
Nuclear receptors constitute a large family of ligand-modulated transcription factors that mediate cellular responses to small lipophilic molecules, including steroids, retinoids, fatty acids, and exogenous ligands. Orphan nuclear receptors with no known endogenous ligands have been discovered to regulate drug-mediated induction of cytochromes P450 (CYP), the major drug-metabolizing enzymes. Here, we report the cloning of an orphan nuclear receptor from chicken, termed chicken xenobiotic receptor (CXR), that is closely related to two mammalian xenobiotic-activated receptors, the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR). Expression of CXR is restricted to tissues where drug induction of CYPs predominantly occurs, namely liver, kidney, small intestine, and colon. Furthermore, CXR binds to a previously identified phenobarbital-responsive enhancer unit (PBRU) in the 5′-flanking region of the chicken CYP2H1 gene. A variety of drugs, steroids, and chemicals activate CXR in CV-1 monkey cell transactivation assays. The same agents induce PBRU-dependent reporter gene expression and CYP2H1 transcription in a chicken hepatoma cell line. These results provide convincing evidence for a major role of CXR in the regulation of CYP2H1 and add a member to the family of xenobiotic-activated orphan nuclear receptors.
Resumo:
A unique gene, RBP-MS, spanning over 230 kb in the human chromosome 8p11-12 near the Werner syndrome gene locus is described. The single-copy RBP-MS gene is alternatively spliced, resulting in a family of at least 12 transcripts (average length of 1.5 kb). Nine different types of cDNAs that encode an RNa-binding motif at the N terminus and helix-rich sequences at the C terminus have been identified thus far. Among the 16 exons identified, four 5'-proximal exons contained sequences homologous to the RNA-binding domain of Drosophila couch potato gene. Northern blot analysis showed that the RBP-MS gene was expressed strongly in the heart, prostate, intestine, and ovary, and poorly in the skeletal muscle, spleen, thymus, brain, and peripheral leukocytes. The possible role of this gene in RNA metabolism is discussed.
Resumo:
Interleukin (IL) 2 signaling requires the dimerization of the IL-2 receptor beta (IL-2R beta) and common gamma (gamma c) chains. The gamma is also a component of the receptors for IL-4, IL-7, and IL-9. To assess the extent and role of the receptor signal transducing system utilizing the gamma c chain on human intestinal epithelial cells, the expression of gamma c, IL-2R beta, and receptor chains specific for IL-4, IL-7, and IL-9 was assessed by reverse transcription-coupled PCR on human intestinal epithelial cell lines and on isolated primary human intestinal epithelial cells. Caco-2, HT-29, and T-84 cells were found to express transcripts for the gamma c and IL-4R chains constitutively. IL-2R beta chain expression was demonstrated in Caco-2 and HT-29 but not in T-84 cells. None of the cell lines expressed mRNA for the IL-2R alpha chain. After stimulation with epidermal growth factor for 24 h Caco-2, HT-29, and T-84 cells expressed transcripts for IL-7R. In addition, Caco-2 and HT-29 cells expressed mRNA for the IL-9R. Receptors for IL-2, IL-4, IL-7, and IL-9 on intestinal epithelial cells lines appeared to be functional; stimulation with these cytokines caused rapid tyrosine phosphorylation of proteins. The relevance of the observations in intestinal epithelial cell lines for intestinal epithelial function in vivo was supported by the demonstration of transcripts for gamma c, IL-2R beta, IL-4R, IL-7R, and IL-9R in primary human intestinal epithelial cells.