5 resultados para Cancer prevention

em National Center for Biotechnology Information - NCBI


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Full term pregnancy early in life is the most effective natural protection against breast cancer in women. Rats treated with chemical carcinogen are similarly protected by a previous pregnancy from mammary carcinogenesis. Proliferation and differentiation of the mammary gland does not explain this phenomenon, as shown by the relative ineffectiveness of perphenazine, a potent mitogenic and differentiating agent. Here, we show that short term treatment of nulliparous rats with pregnancy levels of estradiol 17β and progesterone has high efficacy in protecting them from chemical carcinogen induced mammary cancers. Because the mammary gland is exposed to the highest physiological concentrations of estradiol and progesterone during full term pregnancy, it is these elevated levels of hormones that likely induce protection from mammary cancer. Thus, it appears possible to mimic the protective effects of pregnancy against breast cancer in nulliparous rats by short term specific hormonal intervention.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Epidemiological evidence indicates that avoidance of smoking, increased consumption of fruits and vegetables, and control of infections will have a major effect on reducing rates of cancer. Other factors include avoidance of intense sun exposure, increases in physical activity, and reduction of alcohol consumption and possibly red meat. A substantial reduction in breast cancer is likely to require modification of sex hormone levels, and development of practical methods for doing so is a high research priority. Resolution of the potential protective roles of specific antioxidants and other constituents of fruits and vegetables deserves major attention. Mechanistic studies of carcinogenesis indicate an important role of endogenous oxidative damage to DNA that is balanced by elaborate defense and repair processes. Also key is the rate of cell division, which is influenced by hormones, growth, cytotoxicity, and inflammation, as this determines the probability of converting DNA lesions to mutations. These mechanisms may underlie many epidemiologic observations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A diet high in fiber is associated with a decreased incidence and growth of colon cancers. Butyrate, a four-carbon short-chain fatty acid product of fiber fermentation within the colon, appears to mediate these salutary effects. We sought to determine the molecular mechanism by which butyrate mediates growth inhibition of colonic cancer cells and thereby to elucidate the molecular link between a high-fiber diet and the arrest of colon carcinogenesis. We show that concomitant with growth arrest, butyrate induces p21 mRNA expression in an immediate-early fashion, through transactivation of a promoter cis-element(s) located within 1.4 kb of the transcriptional start site, independent of p53 binding. Studies using the specific histone hyperacetylating agent, trichostatin A, and histone deacetylase 1 indicate that growth arrest and p21 induction occur through a mechanism involving histone hyperacetylation. We show the critical importance of p21 in butyrate-mediated growth arrest by first confirming that stable overexpression of the p21 gene is able to cause growth arrest in the human colon carcinoma cell line, HT-29. Furthermore, using p21-deleted HCT116 human colon carcinoma cells, we provide convincing evidence that p21 is required for growth arrest to occur in response to histone hyperacetylation, but not for serum starvation nor postconfluent growth. Thus, p21 appears to be a critical effector of butyrate-induced growth arrest in colonic cancer cells, and may be an important molecular link between a high-fiber diet and the prevention of colon carcinogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Independent studies indicate that expression of sialylated fucosylated mucins by human carcinomas portends a poor prognosis because of enhanced metastatic spread of tumor cells, that carcinoma metastasis in mice is facilitated by formation of tumor cell complexes with blood platelets, and that metastasis can be attenuated by a background of P-selectin deficiency or by treatment with heparin. The effects of heparin are not primarily due to its anticoagulant action. Other explanations have been suggested but not proven. Here, we bring together all these unexplained and seemingly disparate observations, showing that heparin treatment attenuates tumor metastasis in mice by inhibiting P-selectin-mediated interactions of platelets with carcinoma cell-surface mucin ligands. Selective removal of tumor mucin P-selectin ligands, a single heparin dose, or a background of P-selectin deficiency each reduces tumor cell-platelet interactions in vitro and in vivo. Although each of these maneuvers reduced the in vivo interactions for only a few hours, all markedly reduce long-term organ colonization by tumor cells. Three-dimensional reconstructions by using volume-rendering software show that each situation interferes with formation of the platelet “cloak” around tumor cells while permitting an increased interaction of monocytes (macrophage precursors) with the malignant cells. Finally, we show that human P-selectin is even more sensitive to heparin than mouse P-selectin, giving significant inhibition at concentrations that are in the clinically acceptable range. We suggest that heparin therapy for metastasis prevention in humans be revisited, with these mechanistic paradigms in mind.