11 resultados para Canary Island date palm and Propagation
em National Center for Biotechnology Information - NCBI
Resumo:
The alcohol dehydrogenase (Adh; alcohol:NAD+ oxidoreductase, EC 1.1.1.1) gene family has two or three loci in a broad array of angiosperm species. The relative stability in the number of Adh loci led Gottlieb [Gottlieb, L. D. (1982) Science 216, 373-380] to propose that the Adh gene family arose from an ancient gene duplication. In this study, the isolation of three loci from the California fan palm (Washingtonia robusta) is reported. The three loci from palm are highly diverged. One palm Adh gene, referred to here as adhB, has been completely sequenced, including 950 nucleotides of the upstream regulatory region. For the second locus, adhA, 81% of the exon sequence is complete. Both show the same basic structure as grass Adh genes in terms of intron number and intron location. The third locus, adhC, for which only a small amount of sequence is available (12% of exon sequence) appears to be more highly diverged. Comparison of the Adh gene families from palms and grasses shows that the adh1 and adh2 genes of grasses, and the adhA and adhB genes of palms, arose by duplication following the divergence of the two families. This finding suggests that the multiple Adh loci in different monocot lineages are not the result of a single ancestral duplication but, rather, of multiple duplication events.
Resumo:
The Nef protein is an important virulence factor of primate lentiviruses, yet the mechanisms by which it exerts this influence are imperfectly understood. Here, using an inducible system, we demonstrate that Nef increases IL-2 secretion from T cells stimulated via CD3 or CD28. This effect requires the conservation of the Nef myristoylation signal and SH3-binding proline-based motif. Together with several proteins involved in the initiation and propagation of T cell signaling, Nef associates with membrane microdomains known as rafts. The Nef-mediated superinduction of IL-2 reflects the activation of both NFAT and NFκB. Accordingly, Nef also enhances HIV-1 transcription in response to CD3 or CD28 stimulation. Nef-induced IL-2 hyperresponsiveness is also observed in primary CD4 lymphocytes. Overall, these data suggest that Nef acts at the level of rafts to prime T cells for activation. Likely consequences of this effect are the promotion of HIV-1 replication and the facilitation of virus spread.
Resumo:
Estrogens influence the differentiation and maintenance of reproductive tissues and affect lipid metabolism and bone remodeling. Two estrogen receptors (ERs) have been identified to date, ERα and ERβ. We previously generated and studied knockout mice lacking estrogen receptor α and reported severe reproductive and behavioral phenotypes including complete infertility of both male and female mice and absence of breast tissue development. Here we describe the generation of mice lacking estrogen receptor β (ERβ −/−) by insertion of a neomycin resistance gene into exon 3 of the coding gene by using homologous recombination in embryonic stem cells. Mice lacking this receptor develop normally and are indistinguishable grossly and histologically as young adults from their littermates. RNA analysis and immunocytochemistry show that tissues from ERβ −/− mice lack normal ERβ RNA and protein. Breeding experiments with young, sexually mature females show that they are fertile and exhibit normal sexual behavior, but have fewer and smaller litters than wild-type mice. Superovulation experiments indicate that this reduction in fertility is the result of reduced ovarian efficiency. The mutant females have normal breast development and lactate normally. Young, sexually mature male mice show no overt abnormalities and reproduce normally. Older mutant males display signs of prostate and bladder hyperplasia. Our results indicate that ERβ is essential for normal ovulation efficiency but is not essential for female or male sexual differentiation, fertility, or lactation. Future experiments are required to determine the role of ERβ in bone and cardiovascular homeostasis.
Resumo:
The long QT syndrome (LQTS) is a heritable disorder that predisposes to sudden cardiac death. LQTS is caused by mutations in ion channel genes including HERG and KCNE1, but the precise mechanisms remain unclear. To clarify this situation we injected adenoviral vectors expressing wild-type or LQT mutants of HERG and KCNE1 into guinea pig myocardium. End points at 48–72 h included electrophysiology in isolated myocytes and electrocardiography in vivo. HERG increased the rapid component, IKr, of the delayed rectifier current, thereby accelerating repolarization, increasing refractoriness, and diminishing beat-to-beat action potential variability. Conversely, HERG-G628S suppressed IKr without significantly delaying repolarization. Nevertheless, HERG-G628S abbreviated refractoriness and increased beat-to-beat variability, leading to early afterdepolarizations (EADs). KCNE1 increased the slow component of the delayed rectifier, IKs, without clear phenotypic sequelae. In contrast, KCNE1-D76N suppressed IKs and markedly slowed repolarization, leading to frequent EADs and electrocardiographic QT prolongation. Thus, the two genes predispose to sudden death by distinct mechanisms: the KCNE1 mutant flagrantly undermines cardiac repolarization, and HERG-G628S subtly facilitates the genesis and propagation of premature beats. Our ability to produce electrocardiographic long QT in vivo with a clinical KCNE1 mutation demonstrates the utility of somatic gene transfer in creating genotype-specific disease models.
Resumo:
The temporal and spatial expression patterns of three 1-aminocyclopropane-1-carboxylate (ACC) synthase genes were investigated in pollinated orchid (Phalaenopsis spp.) flowers. Pollination signals initiate a cascade of development events in multiple floral organs, including the induction of ethylene biosynthesis, which coordinates several postpollination developmental responses. The initiation and propagation of ethylene biosynthesis is regulated by the coordinated expression of three distinct ACC synthase genes in orchid flowers. One ACC synthase gene (Phal-ACS1) is regulated by ethylene and participates in amplification and interorgan transmission of the pollination signal, as we have previously described in a related orchid genus. Two additional ACC synthase genes (Phal-ACS2 and Phal-ACS3) are expressed primarily in the stigma and ovary of pollinated orchid flowers. Phal-ACS2 mRNA accumulated in the stigma within 1 h after pollination, whereas Phal-ACS1 mRNA was not detected until 6 h after pollination. Similar to the expression of Phal-ACS2, the Phal-ACS3 gene was expressed within 2 h after pollination in the ovary. Exogenous application of auxin, but not ACC, mimicked pollination by stimulating a rapid increase in ACC synthase activity in the stigma and ovary and inducing Phal-ACS2 and Phal-ACS3 mRNA accumulation in the stigma and ovary, respectively. These results provide the basis for an expanded model of interorgan regulation of three ACC synthase genes that respond to both primary (Phal-ACS2 and Phal-ACS3) and secondary (Phal-ACS1) pollination signals.
Resumo:
A number of studies have noted that nucleotide substitution rates at the chloroplast-encoded rbcL locus violate the molecular clock principle. Substitution rate variation at this plastid gene is particularly pronounced between palms and grasses; for example, a previous study estimated that substitution rates in rbcL sequences are approximately 5-fold faster in grasses than in palms. To determine whether a proportionate change in substitution rates also occurs in plant nuclear genes, we characterized nucleotide substitution rates in palm and grass sequences for the nuclear gene Adh. In this article, we report that palm sequences evolve at a rate of 2.61 x 10(-9) substitution per synonymous site per year, a rate which is slower than most plant nuclear genes. Grass Adh sequences evolve approximately 2.5-fold faster than palms at synonymous sites. Thus, synonymous rates in nuclear Adh genes show a marked decrease in palms relative to grasses, paralleling the pattern found at the plastid rbcL locus. This shared pattern indicates that synonymous rates are correlated between a nuclear and a plastid gene. Remarkably, nonsynonymous rates do not show this correlation. Nonsynonymous rates vary between two duplicated grass Adh loci, and nonsynonymous rates at the palm Adh locus are not markedly reduced relative to grasses.
Resumo:
I will discuss several issues related to the acceleration, collimation, and propagation of jets from active galactic nuclei. Hydromagnetic stresses provide the best bet for both accelerating relativistic flows and providing a certain amount of initial collimation. However, there are limits to how much "self-collimation" can be achieved without the help of an external pressurized medium. Moreover, existing models, which postulate highly organized poloidal flux near the base of the flow, are probably unrealistic. Instead, a large fraction of the magnetic energy may reside in highly disorganized "chaotic" fields. Such a field can also accelerate the flow to relativistic speeds, in some cases with greater efficiency than highly organized fields, but at the expense of self-collimation. The observational interpretation of jet physics is still hampered by a dearth of unambiguous diagnostics. Propagating disturbances in flows, such as the oblique shocks that may constitute the kiloparsec-scale "knots" in the M87 jet, may provide a wide range of untapped diagnostics for jet properties.
Resumo:
We report the crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus, a major human pathogen, to 2.8-Å resolution. This enzyme is a key target for developing specific antiviral therapy. The structure of the catalytic domain contains 531 residues folded in the characteristic fingers, palm, and thumb subdomains. The fingers subdomain contains a region, the “fingertips,” that shares the same fold with reverse transcriptases. Superposition to the available structures of the latter shows that residues from the palm and fingertips are structurally equivalent. In addition, it shows that the hepatitis C virus polymerase was crystallized in a closed fingers conformation, similar to HIV-1 reverse transcriptase in ternary complex with DNA and dTTP [Huang H., Chopra, R., Verdine, G. L. & Harrison, S. C. (1998) Science 282, 1669–1675]. This superposition reveals the majority of the amino acid residues of the hepatitis C virus enzyme that are likely to be implicated in binding to the replicating RNA molecule and to the incoming NTP. It also suggests a rearrangement of the thumb domain as well as a possible concerted movement of thumb and fingertips during translocation of the RNA template-primer in successive polymerization rounds.
Resumo:
The yeast nonchromosomal gene [URE3] is due to a prion form of the nitrogen regulatory protein Ure2p. It is a negative regulator of nitrogen catabolism and acts by inhibiting the transcription factor Gln3p. Ure2p residues 1–80 are necessary for prion generation and propagation. The C-terminal fragment retains nitrogen regulatory activity, albeit somewhat less efficiently than the full-length protein, and it also lowers the frequency of prion generation. The crystal structure of this C-terminal fragment, Ure2p(97–354), at 2.3 Å resolution is described here. It adopts the same fold as the glutathione S-transferase superfamily, consistent with their sequence similarity. However, Ure2p(97–354) lacks a properly positioned catalytic residue that is required for S-transferase activity. Residues within this regulatory fragment that have been indicated by mutational studies to influence prion generation have been mapped onto the three-dimensional structure, and possible implications for prion activity are discussed.
Resumo:
Genotoxins, such as polycyclic aromatic compounds, are ubiquitous in urban and industrial environments. Our understanding of the role that these chemicals play in generating DNA sequence mutations is predominantly derived from laboratory studies with specific genotoxins or extracts of contaminants from environmental media. Most assays are not indicative of the germinal effects of exposure in situ to complex mixtures of common environmental mutagens. Using multilocus DNA fingerprinting, we found the mutation rate in herring gulls inhabiting a heavily industrialized urban harbor (Hamilton Harbour, Ontario) to be more than twice as high as three rural sites: Kent Island, Bay of Fundy; Chantry Island, Lake Huron; and Presqu'ile Provincial Park in Lake Ontario. Overall we found a mutation rate of 0.017 +/- 0.004 per offspring band in Hamilton, 0.006 +/- 0.002 at Kent Island, 0.002 +/- 0.002 from Chantry Island, and 0.004 +/- 0.002 from Presqu'ile Provincial Park. The mutation rate from the rural sites (pooled) was significantly lower than the rate observed in Hamilton Harbour (Fisher's exact test, two-tailed; P = 0.0006). These minisatellite DNA mutations may be important biomarkers for heritable genetic changes resulting from in situ exposure to environmental genotoxins in a free-living vertebrate species.
Resumo:
Mapping the insertion points of 16 signature-tagged transposon mutants on the Salmonella typhimurium chromosome led to the identification of a 40-kb virulence gene cluster at minute 30.7. This locus is conserved among all other Salmonella species examined but is not present in a variety of other pathogenic bacteria or in Escherichia coli K-12. Nucleotide sequencing of a portion of this locus revealed 11 open reading frames whose predicted proteins encode components of a type III secretion system. To distinguish between this and the type III secretion system encoded by the inv/spa invasion locus known to reside on a pathogenicity island, we refer to the inv/spa locus as Salmonella pathogenicity island (SPI) 1 and the new locus as SPI2. SPI2 has a lower G+C content than that of the remainder of the Salmonella genome and is flanked by genes whose products share greater than 90% identity with those of the E. coli ydhE and pykF genes. Thus SPI2 was probably acquired horizontally by insertion into a region corresponding to that between the ydhE and pykF genes of E. coli. Virulence studies of SPI2 mutants have shown them to be attenuated by at least five orders of magnitude compared with the wild-type strain after oral or intraperitoneal inoculation of mice.