7 resultados para Canadian census
em National Center for Biotechnology Information - NCBI
Resumo:
We examine the occurrence of the ≈300 known protein folds in different groups of organisms. To do this, we characterize a large fraction of the currently known protein sequences (≈140,000) in structural terms, by matching them to known structures via sequence comparison (or by secondary-structure class prediction for those without structural homologues). Overall, we find that an appreciable fraction of the known folds are present in each of the major groups of organisms (e.g., bacteria and eukaryotes share 156 of 275 folds), and most of the common folds are associated with many families of nonhomologous sequences (i.e., >10 sequence families for each common fold). However, different groups of organisms have characteristically distinct distributions of folds. So, for instance, some of the most common folds in vertebrates, such as globins or zinc fingers, are rare or absent in bacteria. Many of these differences in fold usage are biologically reasonable, such as the folds of metabolic enzymes being common in bacteria and those associated with extracellular transport and communication being common in animals. They also have important implications for database-based methods for fold recognition, suggesting that an unknown sequence from a plant is more likely to have a certain fold (e.g., a TIM barrel) than an unknown sequence from an animal.
Resumo:
The snowshoe hare and the Canadian lynx in the boreal forests of North America show 9- to 11-year density cycles. These are generally assumed to be linked to each other because lynx are specialist predators on hares. Based on time series data for hare and lynx, we show that the dominant dimensional structure of the hare series appears to be three whereas that of the lynx is two. The three-dimensional structure of the hare time series is hypothesized to be due to a three-trophic level model in which the hare may be seen as simultaneously regulated from below and above. The plant species in the hare diet appear compensatory to one another, and the predator species may, likewise, be seen as an internally compensatory guild. The lynx time series are, in contrast, consistent with a model of donor control in which their populations are regulated from below by prey availability. Thus our analysis suggests that the classic view of a symmetric hare–lynx interaction is too simplistic. Specifically, we argue that the classic food chain structure is inappropriate: the hare is influenced by many predators other than the lynx, and the lynx is primarily influenced by the snowshoe hare.
Resumo:
Across the boreal forest of North America, lynx populations undergo 10-year cycles. Analysis of 21 time series from 1821 to the present demonstrates that these fluctuations are generated by nonlinear processes with regulatory delays. Trophic interactions between lynx and hares cause delayed density-dependent regulation of lynx population growth. The nonlinearity, in contrast, appears to arise from phase dependencies in hunting success by lynx through the cycle. Using a combined approach of empirical, statistical, and mathematical modeling, we highlight how shifts in trophic interactions between the lynx and the hare generate the nonlinear process primarily by shifting functional response curves during the increase and the decrease phases.
Resumo:
The past decade has seen a remarkable explosion in our knowledge of the size and diversity of the myosin superfamily. Since these actin-based motors are candidates to provide the molecular basis for many cellular movements, it is essential that motility researchers be aware of the complete set of myosins in a given organism. The availability of cDNA and/or draft genomic sequences from humans, Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana, Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Dictyostelium discoideum has allowed us to tentatively define and compare the sets of myosin genes in these organisms. This analysis has also led to the identification of several putative myosin genes that may be of general interest. In humans, for example, we find a total of 40 known or predicted myosin genes including two new myosins-I, three new class II (conventional) myosins, a second member of the class III/ninaC myosins, a gene similar to the class XV deafness myosin, and a novel myosin sharing at most 33% identity with other members of the superfamily. These myosins are in addition to the recently discovered class XVI myosin with N-terminal ankyrin repeats and two human genes with similarity to the class XVIII PDZ-myosin from mouse. We briefly describe these newly recognized myosins and extend our previous phylogenetic analysis of the myosin superfamily to include a comparison of the complete or nearly complete inventories of myosin genes from several experimentally important organisms.