71 resultados para Calcium channel blockers
em National Center for Biotechnology Information - NCBI
Risk of suicide among users of calcium channel blockers: population based, nested case-control study
Resumo:
Objective: To investigate possible associations between use of cardiovascular drugs and suicide.
Resumo:
The role of channel inactivation in the molecular mechanism of calcium (Ca2+) channel block by phenylalkylamines (PAA) was analyzed by designing mutant Ca2+ channels that carry the high affinity determinants of the PAA receptor site [Hockerman, G. H., Johnson, B. D., Scheuer, T., and Catterall, W. A. (1995) J. Biol. Chem. 270, 22119–22122] but inactivate at different rates. Use-dependent block by PAAs was studied after expressing the mutant Ca2+ channels in Xenopus oocytes. Substitution of single putative pore-orientated amino acids in segment IIIS6 by alanine (F-1499-A, F-1500-A, F-1510-A, I-1514-A, and F-1515-A) gradually slowed channel inactivation and simultaneously reduced inhibition of barium currents (IBa) by (−)D600 upon depolarization by 100 ms steps at 0.1 Hz. This apparent reduction in drug sensitivity was only evident if test pulses were applied at a low frequency of 0.1 Hz and almost disappeared at the frequency of 1 Hz. (−)D600 slowed IBa recovery after maintained membrane depolarization (1–3 sec) to a comparable extent in all channel constructs. A drug-induced delay in the onset of IBa recovery from inactivation suggests that PAAs promote the transition to a deep inactivated channel conformation. These findings indicate that apparent PAA sensitivity of Ca2+ channels is not only defined by drug interaction with its receptor site but also crucially dependent on intrinsic gating properties of the channel molecule. A molecular model for PAA-Ca2+ channel interaction that accounts for the relationship between drug induced inactivation and channel block by PAA is proposed.
Resumo:
The L type calcium channel agonist (±)Bay K 8644 has been reported to cause characteristic motor abnormalities in adult mice. The current study shows that administration of this drug can also cause the unusual phenomenon of self-injurious biting, particularly when given to young mice. Self-biting is provoked by injecting small quantities of (±)Bay K 8644 directly into the lateral ventricle of the brain, suggesting a central effect of the drug. Similar behaviors can be provoked by administration of another L type calcium channel agonist, FPL 64176. The self-biting provoked by (±)Bay K 8644 can be inhibited by pretreating the mice with dihydropyridine L type calcium channel antagonists such as nifedipine, nimodipine, or nitrendipine. However, self-biting is not inhibited by nondihydropyridine antagonists including diltiazem, flunarizine, or verapamil. The known actions of (±)Bay K 8644 as an L type calcium channel agonist, the reproduction of similar behavior with another L type calcium channel agonist, and the protection afforded by certain L type calcium channel antagonists implicate calcium channels in the mediation of the self-biting behavior. This phenomenon provides a model for studying the neurobiology of this unusual behavior.
Resumo:
In addition to their well-known functions in cellular energy transduction, mitochondria play an important role in modulating the amplitude and time course of intracellular Ca2+ signals. In many cells, mitochondria act as Ca2+ buffers by taking up and releasing Ca2+, but this simple buffering action by itself often cannot explain the organelle's effects on Ca2+ signaling dynamics. Here we describe the functional interaction of mitochondria with store-operated Ca2+ channels in T lymphocytes as a mechanism of mitochondrial Ca2+ signaling. In Jurkat T cells with functional mitochondria, prolonged depletion of Ca2+ stores causes sustained activation of the store-operated Ca2+ current, ICRAC (CRAC, Ca2+ release-activated Ca2+). Inhibition of mitochondrial Ca2+ uptake by compounds that dissipate the intramitochondrial potential unmasks Ca2+-dependent inactivation of ICRAC. Thus, functional mitochondria are required to maintain CRAC-channel activity, most likely by preventing local Ca2+ accumulation near sites that govern channel inactivation. In cells stimulated through the T-cell antigen receptor, acute blockade of mitochondrial Ca2+ uptake inhibits the nuclear translocation of the transcription factor NFAT in parallel with CRAC channel activity and [Ca2+]i elevation, indicating a functional link between mitochondrial regulation of ICRAC and T-cell activation. These results demonstrate a role for mitochondria in controlling Ca2+ channel activity and signal transmission from the plasma membrane to the nucleus.
Resumo:
The putative Ca2+-channel blocker LaCl3 prevented the gravitropic bending of cut snapdragon (Antirrhinum majus L.) spikes (S. Philosoph-Hadas, S. Meir, I. Rosenberger, A.H. Halevy [1996] Plant Physiol 110: 301–310) and inhibited stem curvature to a greater extent than vertical and horizontal stem elongation at the bending zone. This might indicate that LaCl3, which modulates cytosolic Ca2+, does not influence general stem-growth processes but may specifically affect other gravity-associated processes occurring at the stem-bending zone. Two such specific gravity-dependent events were found to occur in the bending zone of snapdragon spikes: sedimentation of starch-containing chloroplasts at the bottom of stem cortex cells, as seen in cross-sections, and establishment of an ethylene gradient across the stem. Our results show that the lateral sedimentation of chloroplasts associated with gravity sensing was prevented in cross-sections taken from the bending zone of LaCl3-treated and subsequently gravistimulated spikes and that LaCl3 completely prevented the gravity-induced, asymmetric ethylene production established across the stem-bending zone. These data indicate that LaCl3 inhibits stem curvature of snapdragon spikes by preventing several gravity-dependent processes. Therefore, we propose that the gravitropic response of shoots could be mediated through a Ca2+-dependent pathway involving modulation of cytosolic Ca2+ at various stages.
Resumo:
The extracellular matrix (ECM) is an intricate network composed of an array of macromolecules capable of regulating the functional responsiveness of cells. Its composition greatly varies among different types of tissue, and dysregulation of its metabolism may contribute to vascular remodeling during the pathogenesis of various diseases, including atherosclerosis. In view of their antiatherosclerotic effects, the role of Ca2+ channel blockers in the metabolism of ECM was examined. Nanomolar concentrations of the five Ca2+ channel blockers amlodipine, felodipine, manidipine, verapamil, or diltiazem significantly decreased both the constitutive and platelet-derived growth factor BB-dependent collagen deposition in the ECM formed by human vascular smooth muscle cells and fibroblasts. The drugs inhibited the expression of fibrillar collagens type I and III and of basement membrane type IV collagen. Furthermore, Ca2+ channel blockers specifically increased the proteolytic activity of the 72-kDa type IV collagenase as shown by gelatin zymography and inhibited the transcription of tissue inhibitor of metalloproteinases-2.
Resumo:
Osteoblasts express calcium channels that are thought to be involved in the transduction of extracellular signals regulating bone metabolism. The molecular identity of the pore-forming subunit (alpha 1) of L-type calcium channel(s) was determined in rat osteosarcoma UMR-106 cells, which express an osteoblast phenotype. A homology-based reverse transcriptase-polymerase chain reaction cloning strategy was employed that used primers spanning the fourth domain. Three types of cDNAs were isolated, corresponding to the alpha 1S (skeletal), alpha 1C (cardiac), and alpha 1D (neuroendocrine) isoforms. In the transmembrane segment IVS3 and the extracellular loop formed by the IVS3-S4 linker, a single pattern of mRNA splicing was found that occurs in all three types of calcium channel transcripts. Northern blot analysis revealed an 8.6-kb mRNA that hybridized to the alpha 1C probe and 4.8- and 11.7-kb mRNAs that hybridized to the alpha 1S and alpha 1D probes. Antisense oligonucleotides directed to the calcium channel alpha 1D transcript, but not those directed to alpha 1S or alpha 1C transcripts, inhibited the rise of intracellular calcium induced by parathyroid hormone. However, alpha 1D antisense oligonucleotides had no effect on the accumulation of cAMP induced by parathyroid hormone. When L-type calcium channels were activated with Bay K 8644, antisense oligonucleotides to each of the three isoforms partially inhibited the rise of intracellular calcium. The present results provide evidence for the expression of three distinct calcium channel alpha 1-subunit isoforms in an osteoblast-like cell line. We conclude that the alpha 1D isoform is selectively activated by parathyroid hormone.
Resumo:
Forced expression of gap junction proteins, connexins, enables gap junction-deficient cell lines to propagate intercellular calcium waves. Here, we show that ATP secretion from the poorly coupled cell lines, C6 glioma, HeLa, and U373 glioblastoma, is potentiated 5- to 15-fold by connexin expression. ATP release required purinergic receptor-activated intracellular Ca2+ mobilization and was inhibited by Cl− channel blockers. Calcium wave propagation also was reduced by purinergic receptor antagonists and by Cl− channel blockers but insensitive to gap junction inhibitors. These observations suggest that cell-to-cell signaling associated with connexin expression results from enhanced ATP release and not, as previously believed, from an increase in intercellular coupling.
Resumo:
Human epithelial kidney cells (HEK) were prepared to coexpress α1A, α2δ with different β calcium channel subunits and green fluorescence protein. To compare the calcium currents observed in these cells with the native neuronal currents, electrophysiological and pharmacological tools were used conjointly. Whole-cell current recordings of human epithelial kidney α1A-transfected cells showed small inactivating currents in 80 mM Ba2+ that were relatively insensitive to calcium blockers. Coexpression of α1A, βIb, and α2δ produced a robust inactivating current detected in 10 mM Ba2+, reversibly blockable with low concentration of ω-agatoxin IVA (ω-Aga IVA) or synthetic funnel-web spider toxin (sFTX). Barium currents were also supported by α1A, β2a, α2δ subunits, which demonstrated the slowest inactivation and were relatively insensitive to ω-Aga IVA and sFTX. Coexpression of β3 with the same combination as above produced inactivating currents also insensitive to low concentration of ω-Aga IVA and sFTX. These data indicate that the combination α1A, βIb, α2δ best resembles P-type channels given the rate of inactivation and the high sensitivity to ω-Aga IVA and sFTX. More importantly, the specificity of the channel blocker is highly influenced by the β subunit associated with the α1A subunit.
Resumo:
Al toxicity is a major problem that limits crop productivity on acid soils. It has been suggested that Al toxicity is linked to changes in cellular Ca homeostasis and the blockage of plasma membrane Ca2+-permeable channels. BY-2 suspension-cultured cells of tobacco (Nicotiana tabacum L.) exhibit rapid cell expansion that is sensitive to Al. Therefore, the effect of Al on changes in cytoplasmic free Ca concentration ([Ca2+]cyt) was followed in BY-2 cells to assess whether Al perturbed cellular Ca homeostasis. Al exposure resulted in a prolonged reduction in [Ca2+]cyt and inhibition of growth that was similar to the effect of the Ca2+ channel blocker La3+ and the Ca2+ chelator ethyleneglycol-bis(β-aminoethyl ether)-N,N′-tetraacetic acid. The Ca2+ channel blockers verapamil and nifedipine did not induce a decrease in [Ca2+]cyt in these cells and also failed to inhibit growth. Al and La3+, but not verapamil or nifedipine, reduced the rate of Mn2+ quenching of Indo-1 fluorescence, which is consistent with the blockage of Ca2+- and Mn2+-permeable channels. These results suggest that Al may act to block Ca2+ channels at the plasma membrane of plant cells and this action may play a crucial role in the phytotoxic activity of the Al ion.
Resumo:
Low voltage-activated, or T-type, calcium currents are important regulators of neuronal and muscle excitability, secretion, and possibly cell growth and differentiation. The gene (or genes) coding for the pore-forming subunit of low voltage-activated channel proteins has not been unequivocally identified. We have used reverse transcription–PCR to identify partial clones from rat atrial myocytes that share high homology with a member of the E class of calcium channel genes. Antisense oligonucleotides targeting one of these partial clones (raE1) specifically block the increase in T-current density that normally results when atrial myocytes are treated with insulin-like growth factor 1 (IGF-1). Antisense oligonucleotides targeting portions of the neuronal rat α1E sequence, which are not part of the clones detected in atrial tissue, also block the IGF-1-induced increase in T-current, suggesting that the high homology to α1E seen in the partial clone may be present in the complete atrial sequence. The basal T-current expressed in these cells is also blocked by antisense oligonucleotides, which is consistent with the notion that IGF-1 up-regulates the same gene that encodes the basal current. These results support the hypothesis that a member of the E class of calcium channel genes encodes a low voltage-activated calcium channel in atrial myocytes.
Resumo:
Rat basophilic leukemia (RBL-2H3) cells predominantly express the type II receptor for inositol 1,4,5-trisphosphate (InsP3), which operates as an InsP3-gated calcium channel. In these cells, cross-linking the high-affinity immunoglobulin E receptor (FcεR1) leads to activation of phospholipase C γ isoforms via tyrosine kinase- and phosphatidylinositol 3-kinase-dependent pathways, release of InsP3-sensitive intracellular Ca2+ stores, and a sustained phase of Ca2+ influx. These events are accompanied by a redistribution of type II InsP3 receptors within the endoplasmic reticulum and nuclear envelope, from a diffuse pattern with a few small aggregates in resting cells to large isolated clusters after antigen stimulation. Redistribution of type II InsP3 receptors is also seen after treatment of RBL-2H3 cells with ionomycin or thapsigargin. InsP3 receptor clustering occurs within 5–10 min of stimulus and persists for up to 1 h in the presence of antigen. Receptor clustering is independent of endoplasmic reticulum vesiculation, which occurs only at ionomycin concentrations >1 μM, and maximal clustering responses are dependent on the presence of extracellular calcium. InsP3 receptor aggregation may be a characteristic cellular response to Ca2+-mobilizing ligands, because similar results are seen after activation of phospholipase C-linked G-protein-coupled receptors; cholecystokinin causes type II receptor redistribution in rat pancreatoma AR4–2J cells, and carbachol causes type III receptor redistribution in muscarinic receptor-expressing hamster lung fibroblast E36M3R cells. Stimulation of these three cell types leads to a reduction in InsP3 receptor levels only in AR4–2J cells, indicating that receptor clustering does not correlate with receptor down-regulation. The calcium-dependent aggregation of InsP3 receptors may contribute to the previously observed changes in affinity for InsP3 in the presence of elevated Ca2+ and/or may establish discrete regions within refilled stores with varying capacity to release Ca2+ when a subsequent stimulus results in production of InsP3.
Resumo:
By patch-clamp analysis, we have shown that chronic, intermittent mechanical strain (CMS) increases the activity of stretch-activated cation channels of osteoblast-like UMR-106.01 cells. CMS also produces a swelling-activated whole-cell conductance (Gm) regulated by varying strain levels. We questioned whether the swelling-activated conductance was produced by stretch-activated cation channel activity. We have identified a gene involved in the increase in conductance by using antisense oligodeoxynucleotides (ODN) derived from the alpha 1-subunit genes of calcium channels found in UMR-106.01 cells (alpha1S, alpha1C, and alpha1D). We demonstrate that alpha 1C antisense ODNs abolish the increase in Gm in response to hypotonic swelling following CMS. Antisense ODNs to alpha1S and alpha1D, sense ODNs to alpha1C, and sham permeabilization had no effect on the conductance increase. In addition, during cell-attached patch-clamp studies, antisense ODNs to alpha1c completely blocked the swelling-activated and stretch-activated nonselective cation channel response to strain. Antisense ODNs to alpha1S treatment produced no effect on either swelling-activated or stretch-activated cation channel activity. There were differences in the stretch-activated and swelling-activated cation channel activity, but whether they represent different channels could not be determined from our data. Our data indicate that the alpha1C gene product is involved in the Gm and the activation of the swelling-activated cation channels induced by CMS. The possibility that swelling-activated cation channel genes are members of the calcium channel superfamily exists, but if alpha1c is not the swelling-activated cation channel itself, then its expression is required for induction of swelling-activated cation channel activity by CMS.
Resumo:
Voltage-dependent Ca2+ currents evoke synaptic transmitter release. Of six types of Ca2+ channels, L-, N-, P-, Q-, R-, and T-type, only N- and P/Q-type channels have been pharmacologically identified to mediate action-potential-evoked transmitter release in the mammalian central nervous system. We tested whether Ca2+ channels other than N- and P/Q-type control transmitter release in a calyx-type synapse of the rat medial nucleus of the trapezoid body. Simultaneous recordings of presynaptic Ca2+ influx and the excitatory postsynaptic current evoked by a single action potential were made at single synapses. The R-type channel, a high-voltage-activated Ca2+ channel resistant to L-, N-, and P/Q-type channel blockers, contributed 26% of the total Ca2+ influx during a presynaptic action potential. This Ca2+ current evoked transmitter release sufficiently large to initiate an action potential in the postsynaptic neuron. The R-type current controlled release with a lower efficacy than other types of Ca2+ currents. Activation of metabotropic glutamate receptors and γ-aminobutyric acid type B receptors inhibited the R-type current. Because a significant fraction of presynaptic Ca2+ channels remains unidentified in many other central synapses, the R-type current also could contribute to evoked transmitter release in these synapses.