4 resultados para Calcium Compounds

em National Center for Biotechnology Information - NCBI


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Overexpression of wild-type p53 in M1 myeloid leukemia cells induces apoptotic cell death that was suppressed by the calcium ionophore A23187 and the calcium ATPase inhibitor thapsigargin (TG). This suppression of apoptosis by A23187 or TG was associated with suppression of caspase activation but not with suppression of wild-type-p53-induced expression of WAF-1, mdm-2, or FAS. In contrast to suppression of apoptosis by the cytokines interleukin 6 (IL-6) and interferon γ, a protease inhibitor, or an antioxidant, suppression of apoptosis by A23187 or TG required extracellular Ca2+ and was specifically abolished by the calcineurin inhibitor cyclosporin A. IL-6 induced immediate early activation of junB and zif/268 (Egr-1) but A23187 and TG did not. A23187 and TG also suppressed induction of apoptosis by doxorubicin or vincristine in M1 cells that did not express p53 by a cyclosporin A-sensitive mechanism. Suppression of apoptosis by A23187 or TG was not associated with autocrine production of IL-6. Apoptosis induced in IL-6-primed M1 cells after IL-6 withdrawal was not suppressed by A23187 or TG but was suppressed by the cytokines IL-6, IL-3, or interferon γ. The results indicate that these Ca2+-mobilizing compounds can suppress some pathways of apoptosis suppressed by cytokines but do so by a different mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The endothelial isoform of NO synthase (eNOS) is targeted to sphingolipid-enriched signal-transducing microdomains in the plasma membrane termed caveolae. Among the caveolae-targeted sphingolipids are the ceramides, a class of acylated sphingosine compounds that have been implicated in diverse cellular responses. We have explored the role of ceramide analogues in eNOS signaling in cultured bovine aortic endothelial cells (BAEC). Addition of the ceramide analogue N-acetylsphingosine (C2-ceramide; 5 μM) to intact BAEC leads to a significant increase in NO synthase activity (assayed by using the fluorescent indicator 4,5-diaminofluorescein) and translocation of eNOS from the endothelial cell membrane to intracellular sites (measured by using quantitative immunofluorescence techniques); the biologically inactive ceramide N-acetyldihydrosphingosine is entirely without effect. C2-ceramide-induced eNOS activation and translocation are unaffected by the intracellular calcium chelator 1,2-bis-o-aminophenoxyethane-N,N,N′,N′-tetraacetic acid (BAPTA). Using the calcium-specific fluorescent indicator fluo-3, we also found that C2-ceramide activation of eNOS is unaccompanied by a drug-induced increase in intracellular calcium. These findings stand in sharp contrast to the mechanism by which bradykinin, estradiol, and other mediators acutely activate eNOS, in which a rapid, agonist-promoted increase in intracellular calcium is required. Finally, we show that treatment of BAEC with bradykinin causes a significant increase in cellular ceramide content; the response to bradykinin has an EC50 of 3 nM and is blocked by the bradykinin B2-receptor antagonist HOE140. Bradykinin-induced ceramide generation could represent a mechanism for longer-term regulation of eNOS activity. Our results suggest that ceramide functions independently of Ca2+-regulated pathways to promote activation and translocation of eNOS, and that this lipid mediator may represent a physiological regulator of eNOS in vascular endothelial cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synaptic vesicle membrane protein synaptotagmin (tagmin) is essential for fast, calcium-dependent, neurotransmitter release and is likely to be the calcium sensor for exocytosis, because of its many calcium-dependent properties. Polyphosphoinositides are needed for exocytosis, but it has not been known why. We now provide a possible connection between these observations with the finding that the C2B domain of tagmin I binds phosphatidylinositol-4,5-bisphosphate (PIns-4,5-P2), its isomer phosphatidylinositol-3,4-bisphosphate and phosphatidylinositol-3,4,5-trisphosphate (PIns-3,4,5-P3). Calcium ions switch the specificity of this binding from PIns-3,4,5-P3 (at calcium concentrations found in resting nerve terminals) to PIns-4,5-P2 (at concentration of calcium required for transmitter release). Inositol polyphosphates, known blockers of neurotransmitter release, inhibit the binding of both PIns-4,5-P2 and PIns-3,4,5-P3 to tagmin. Our findings imply that tagmin may operate as a bimodal calcium sensor, switching bound lipids during exocytosis. This connection to polyphosphoinositides, compounds whose levels are physiologically regulated, could be important for long-term memory and learning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In addition to their well-known functions in cellular energy transduction, mitochondria play an important role in modulating the amplitude and time course of intracellular Ca2+ signals. In many cells, mitochondria act as Ca2+ buffers by taking up and releasing Ca2+, but this simple buffering action by itself often cannot explain the organelle's effects on Ca2+ signaling dynamics. Here we describe the functional interaction of mitochondria with store-operated Ca2+ channels in T lymphocytes as a mechanism of mitochondrial Ca2+ signaling. In Jurkat T cells with functional mitochondria, prolonged depletion of Ca2+ stores causes sustained activation of the store-operated Ca2+ current, ICRAC (CRAC, Ca2+ release-activated Ca2+). Inhibition of mitochondrial Ca2+ uptake by compounds that dissipate the intramitochondrial potential unmasks Ca2+-dependent inactivation of ICRAC. Thus, functional mitochondria are required to maintain CRAC-channel activity, most likely by preventing local Ca2+ accumulation near sites that govern channel inactivation. In cells stimulated through the T-cell antigen receptor, acute blockade of mitochondrial Ca2+ uptake inhibits the nuclear translocation of the transcription factor NFAT in parallel with CRAC channel activity and [Ca2+]i elevation, indicating a functional link between mitochondrial regulation of ICRAC and T-cell activation. These results demonstrate a role for mitochondria in controlling Ca2+ channel activity and signal transmission from the plasma membrane to the nucleus.