5 resultados para Calabi-Yau-Mannigfaltigkeit
em National Center for Biotechnology Information - NCBI
Resumo:
Two regioisomers with C3 or D3 symmetry of water-soluble carboxylic acid C60 derivatives, containing three malonic acid groups per molecule, were synthesized and found to be equipotent free radical scavengers in solution as assessed by EPR analysis. Both compounds also inhibited the excitotoxic death of cultured cortical neurons induced by exposure to N-methyl-d-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), or oxygen-glucose deprivation, but the C3 regioisomer was more effective than the D3 regioisomer, possibly reflecting its polar nature and attendant greater ability to enter lipid membranes. At 100 μM, the C3 derivative fully blocked even rapidly triggered, NMDA receptor-mediated toxicity, a form of toxicity with limited sensitivity to all other classes of free radical scavengers we have tested. The C3 derivative also reduced apoptotic neuronal death induced by either serum deprivation or exposure to Aβ1–42 protein. Furthermore, continuous infusion of the C3 derivative in a transgenic mouse carrying the human mutant (G93A) superoxide dismutase gene responsible for a form of familial amyotrophic lateral sclerosis, delayed both death and functional deterioration. These data suggest that polar carboxylic acid C60 derivatives may have attractive therapeutic properties in several acute or chronic neurodegenerative diseases.
Resumo:
Hydrophilic drugs are often poorly absorbed when administered orally. There has been considerable interest in the possibility of using absorption enhancers to promote absorption of polar molecules across membrane surfaces. The bile acids are one of the most widely investigated classes of absorption enhancers, but there is disagreement about what features of bile acid enhancers are responsible for their efficacy. We have designed a class of glycosylated bile acid derivatives to evaluate how increasing the hydrophilicity of the steroid nucleus affects the ability to transport polar molecules across membranes. Some of the glycosylated molecules are significantly more effective than taurocholate in promoting the intestinal absorption of a range of drugs, showing that hydrophobicity is not a critical parameter in transport efficacy, as previously suggested. Furthermore, the most effective glycosylated compound is also far less damaging to membranes than the best bile acid absorption promoters, presumably because it is more hydrophilic. The results reported here show that it is possible to decouple absorption-promoting activity from membrane damage, a finding that should spark interest in the design of new compounds to facilitate the delivery of polar drugs.
Resumo:
The action of calmodulin (CaM) on target proteins is important for a variety of cellular functions. We demonstrate here, however, that the presence of a CaM-binding site on a protein does not necessarily imply a functional effect. The α-subunit of the cGMP-gated cation channel of human retinal cones has a CaM-binding site on its cytoplasmic N-terminal region, but the homomeric channel that it forms is not functionally modulated by CaM. Mutational analysis based on comparison to the highly homologous olfactory cyclic nucleotide-gated channel α-subunit, which does form a CaM-modulated channel, indicates that residues downstream of the CaM-binding domain on these channels are also important for CaM to have an effect. These findings suggest that a CaM-binding site and complementary structural features in a protein probably evolve independently, and an effect caused by CaM occurs only in the presence of both elements. More generally, the same may be true for other recognized binding sites on proteins for modulators or activators, so that a demonstrated physical interaction does not necessarily imply functional consequence.
Resumo:
11β-hydroxysteroid dehydrogenase type 1 (11β-HSD-1) intracellularly regenerates active corticosterone from circulating inert 11-dehydrocorticosterone (11-DHC) in specific tissues. The hippocampus is a brain structure particularly vulnerable to glucocorticoid neurotoxicity with aging. In intact hippocampal cells in culture, 11β-HSD-1 acts as a functional 11β-reductase reactivating inert 11-DHC to corticosterone, thereby potentiating kainate neurotoxicity. We examined the functional significance of 11β-HSD-1 in the central nervous system by using knockout mice. Aged wild-type mice developed elevated plasma corticosterone levels that correlated with learning deficits in the watermaze. In contrast, despite elevated plasma corticosterone levels throughout life, this glucocorticoid-associated learning deficit was ameliorated in aged 11β-HSD-1 knockout mice, implicating lower intraneuronal corticosterone levels through lack of 11-DHC reactivation. Indeed, aged knockout mice showed significantly lower hippocampal tissue corticosterone levels than wild-type controls. These findings demonstrate that tissue corticosterone levels do not merely reflect plasma levels and appear to play a more important role in hippocampal functions than circulating blood levels. The data emphasize the crucial importance of local enzymes in determining intracellular glucocorticoid activity. Selective 11β-HSD-1 inhibitors may protect against hippocampal function decline with age.
Resumo:
Mutations in the genes encoding two proteins of the retinal rod phototransduction cascade, opsin and the beta subunit of rod cGMP phosphodiesterase, cause retinitis pigmentosa (RP) in some families. Here we report defects in a third member of this biochemical pathway in still other patients with this disease. We screened 94 unrelated patients with autosomal dominant RP and 173 unrelated patients with autosomal recessive RP for mutations in the gene encoding the alpha subunit of the rod cGMP-gated cation channel. Five mutant sequences cosegregated with disease among four unrelated families with autosomal recessive RP. Two of these were nonsense mutations early in the reading frame (Glu76End and Lys139End) and one was a deletion encompassing most if not all of the transcriptional unit; these three alleles would not be expected to encode a functional channel. The remaining two mutations were a missense mutation (Ser316Phe) and a frameshift [Arg654(1-bp del)] mutation truncating the last 32 aa in the C terminus. The latter two mutations were expressed in vitro and found to encode proteins that were predominantly retained inside the cell instead of being targeted to the plasma membrane. We conclude that the absence or paucity of functional cGMP-gated cation channels in the plasma membrane is deleterious to rod photoreceptors and is an uncommon cause of RP.