34 resultados para CYTOCHROME-B
em National Center for Biotechnology Information - NCBI
Resumo:
Cytochrome b-type NAD(P)H oxidoreductases are involved in many physiological processes, including iron uptake in yeast, the respiratory burst, and perhaps oxygen sensing in mammals. We have identified a cytosolic cytochrome b-type NAD(P)H oxidoreductase in mammals, a flavohemoprotein (b5+b5R) containing cytochrome b5 (b5) and b5 reductase (b5R) domains. A genetic approach, using blast searches against dbest for FAD-, NAD(P)H-binding sequences followed by reverse transcription–PCR, was used to clone the complete cDNA sequence of human b5+b5R from the hepatoma cell line Hep 3B. Compared with the classical single-domain b5 and b5R proteins localized on endoplasmic reticulum membrane, b5+b5R also has binding motifs for heme, FAD, and NAD(P)H prosthetic groups but no membrane anchor. The human b5+b5R transcript was expressed at similar levels in all tissues and cell lines that were tested. The two functional domains b5* and b5R* are linked by an approximately 100-aa-long hinge bearing no sequence homology to any known proteins. When human b5+b5R was expressed as c-myc adduct in COS-7 cells, confocal microscopy revealed a cytosolic localization at the perinuclear space. The recombinant b5+b5R protein can be reduced by NAD(P)H, generating spectrum typical of reduced cytochrome b with alpha, beta, and Soret peaks at 557, 527, and 425 nm, respectively. Human b5+b5R flavohemoprotein is a NAD(P)H oxidoreductase, demonstrated by superoxide production in the presence of air and excess NAD(P)H and by cytochrome c reduction in vitro. The properties of this protein make it a plausible candidate oxygen sensor.
Resumo:
Swiftlets are small insectivorous birds, many of which nest in caves and are known to echolocate. Due to a lack of distinguishing morphological characters, the taxonomy of swiftlets is primarily based on the presence or absence of echolocating ability, together with nest characters. To test the reliability of these behavioral characters, we constructed an independent phylogeny using cytochrome b mitochondrial DNA sequences from swiftlets and their relatives. This phylogeny is broadly consistent with the higher classification of swifts but does not support the monophyly of swiftlets. Echolocating swiftlets (Aerodramus) and the nonecholocating "giant swiftlet" (Hydrochous gigas) group together, but the remaining nonecholocating swiftlets belonging to Collocalia are not sister taxa to these swiftlets. While echolocation may be a synapomorphy of Aerodramus (perhaps secondarily lost in Hydrochous), no character of Aerodramus nests showed a statistically significant fit to the molecular phylogeny, indicating that nest characters are not phylogenetically reliable in this group.
Resumo:
The level and structure of yeast iso-1-cytochrome c and iso-2-cytochrome c, encoded by the nuclear genes CYC1 and CYC7, respectively, are normally not altered in rho- mutants, which completely lack the cytochromes a.a3 subunits and cytochrome b that are encoded by mitochondrial DNA. In contrast, iso-cytochromes c containing the amino acid change Thr-78-->Ile (T78I) were observed at the normal or near-normal wild-type level in rho+ strains but were completely absent in rho- mutants. We have demonstrated with the "global" suppressor mutation Asn-52-->Ile and by pulse-chase labeling that the T78I iso-1-cytochrome c undergoes rapid cellular degradation in rho- mutants. Furthermore, specific mutations revealed that the deficiency of T78I iso-1 cytochrome c can be caused by the lack of cytochrome a.a3 or cytochrome c1, but not by the lack of cytochrome b. Thus, this and certain other, but not all, labile forms of cytochrome c are protected from degradation by the interaction with its physiological partners.
Resumo:
A long-standing question in Quaternary paleontology is whether climate-induced, population-level phenotypic change is a result of large-scale migration or evolution in isolation. To directly measure genetic variation through time, ancient DNA and morphologic variation was measured over 2,400 years in a Holocene sequence of pocket gophers (Thomomys talpoides) from Lamar Cave, Yellowstone National Park, Wyoming. Ancient specimens and modern samples collected near Lamar Cave share mitochondrial cytochrome b sequences that are absent from adjacent localities, suggesting that the population was isolated for the entire period. In contrast, diastemal length, a morphologic character correlated with body size and nutritional level, changed predictably in response to climatic change. Our results demonstrate that small mammal populations can experience the long-term isolation assumed by many theoretical models of microevolutionary change.
Resumo:
During the period of September 1997 through July 1998, two coelacanth fishes were captured off Manado Tua Island, Sulawesi, Indonesia. These specimens were caught almost 10,000 km from the only other known population of living coelacanths, Latimeria chalumnae, near the Comores. The Indonesian fish was described recently as a new species, Latimeria menadoensis, based on morphological differentiation and DNA sequence divergence in fragments of the cytochrome b and 12S rRNA genes. We have obtained the sequence of 4,823 bp of mitochondrial DNA from the same specimen, including the entire genes for cytochrome b, 12S rRNA, 16S rRNA, four tRNAs, and the control region. The sequence is 4.1% different from the published sequence of an animal captured from the Comores, indicating substantial divergence between the Indonesian and Comorean populations. Nine morphological and meristic differences are purported to distinguish L. menadoensis and L. chalumnae, based on comparison of a single specimen of L. menadoensis to a description of five individuals of L. chalumnae from the Comores. A survey of the literature provided data on 4 of the characters used to distinguish L. menadoensis from L. chalumnae from an additional 16 African coelacanths; for all 4 characters, the Indonesian sample was within the range of variation reported for the African specimens. Nonetheless, L. chalumnae and L. menadoensis appear to be separate species based on divergence of mitochondrial DNA.
Resumo:
Ecological studies have demonstrated the role of competition in structuring communities; however, the importance of competition as a vehicle for evolution by natural selection and speciation remains unresolved. Study systems of insular faunas have provided several well known cases where ecological character displacement, coevolution of competitors leading to increased morphological separation, is thought to have occurred (e.g., anoline lizards and geospizine finches). Whiptail lizards (genus Cnemidophorus) from the islands of the Sea of Cortez and the surrounding mainland demonstrate a biogeographic pattern of morphological variation suggestive of character displacement. Two species of Cnemidophorus occur on the Baja peninsula, one relatively large (Cnemidophorus tigris) and one smaller (Cnemidophorus hyperythrus). Oceanic islands in the Sea of Cortez contain only single species, five of six having sizes intermediate to both species found on the Baja peninsula. On mainland Mexico C. hyperythrus is absent, whereas C. tigris is the smaller species in whiptail guilds. Here we construct a phylogeny using nucleotide sequences of the cytochrome b gene to infer the evolutionary history of body size change and historical patterns of colonization in the Cnemidophorus system. The phylogenetic analysis indicates that (i) oceanic islands have been founded at least five times from mainland sources by relatives of either C. tigris or C. hyperythrus, (ii) there have been two separate instances of character relaxation on oceanic islands for C. tigris, and (iii) there has been colonization of the oceanic island Cerralvo with retention of ancestral size for Cnemidophorus ceralbensis, a relative of C. hyperythrus. Finally, the phylogenetic analysis reveals potential cryptic species within mainland populations of C. tigris.
Resumo:
Pulmonary neuroepithelial bodies (NEB) are widely distributed throughout the airway mucosa of human and animal lungs. Based on the observation that NEB cells have a candidate oxygen sensor enzyme complex (NADPH oxidase) and an oxygen-sensitive K+ current, it has been suggested that NEB may function as airway chemoreceptors. Here we report that mRNAs for both the hydrogen peroxide sensitive voltage gated potassium channel subunit (KH2O2) KV3.3a and membrane components of NADPH oxidase (gp91phox and p22phox) are coexpressed in the NEB cells of fetal rabbit and neonatal human lungs. Using a microfluorometry and dihydrorhodamine 123 as a probe to assess H2O2 generation, NEB cells exhibited oxidase activity under basal conditions. The oxidase in NEB cells was significantly stimulated by exposure to phorbol esther (0.1 μM) and inhibited by diphenyliodonium (5 μM). Studies using whole-cell voltage clamp showed that the K+ current of cultured fetal rabbit NEB cells exhibited inactivating properties similar to KV3.3a transcripts expressed in Xenopus oocyte model. Exposure of NEB cells to hydrogen peroxide (H2O2, the dismuted by-product of the oxidase) under normoxia resulted in an increase of the outward K+ current indicating that H2O2 could be the transmitter modulating the O2-sensitive K+ channel. Expressed mRNAs or orresponding protein products for the NADPH oxidase membrane cytochrome b as well as mRNA encoding KV3.3a were identified in small cell lung carcinoma cell lines. The studies presented here provide strong evidence for an oxidase-O2 sensitive potassium channel molecular complex operating as an O2 sensor in NEB cells, which function as chemoreceptors in airways and in NEB related tumors. Such a complex may represent an evolutionary conserved biochemical link for a membrane bound O2-signaling mechanism proposed for other cells and life forms.
Resumo:
We show that the heme-copper terminal oxidases of Thermus thermophilus (called ba3 and caa3) are able to catalyze the reduction of nitric oxide (NO) to nitrous oxide (N2O) under reducing anaerobic conditions. The rate of NO consumption and N2O production were found to be linearly dependent on enzyme concentration, and activity was abolished by enzyme denaturation. Thus, contrary to the eukaryotic enzyme, both T. thermophilus oxidases display a NO reductase activity (3.0 ± 0.7 mol NO/mol ba3 × min and 32 ± 8 mol NO/mol caa3 × min at [NO] ≈ 50 μM and 20°C) that, though considerably lower than that of bona fide NO reductases (300–4,500 mol NO/mol enzyme × min), is definitely significant. We also show that for ba3 oxidase, NO reduction is associated to oxidation of cytochrome b at a rate compatible with turnover, suggesting a mechanism consistent with the stoichiometry of the overall reaction. We propose that the NO reductase activity of T. thermophilus oxidases may depend on a peculiar CuB+ coordination, which may be revealed by the forthcoming three-dimensional structure. These findings support the hypothesis of a common phylogeny of aerobic respiration and bacterial denitrification, which was proposed on the basis of structural similarities between the Pseudomonas stutzeri NO reductase and the cbb3 terminal oxidases. Our findings represent functional evidence in support of this hypothesis.
Resumo:
Although salamanders are characteristic amphibians in Holarctic temperate habitats, in tropical regions they have diversified evolutionarily only in tropical America. An adaptive radiation centered in Middle America occurred late in the history of a single clade, the supergenus Bolitoglossa (Plethodontidae), and large numbers of species now occur in diverse habitats. Sublineages within this clade decrease in number from the northern to southern parts of Middle America, and in Costa Rica, there are but three. Despite this phylogenetic constraint, Costa Rica has many species; the number of salamander species on one local elevational transect in the Cordillera de Talamanca may be the largest for any such transect in the world. Extraordinary variation in sequences of the mitochondrial gene cytochrome b within a clade of the genus Bolitoglossa in Costa Rica reveals strong phylogeographic structure within a single species, Bolitoglossa pesrubra. Allozymic variation in 19 proteins reveals a pattern largely concordant with the mitochondrial DNA phylogeography. More species exist than are currently recognized. Diversification occurs in restricted geographic areas and involves sharp geographic and elevational differentiation and zonation. In their degree of genetic differentiation at a local scale, these species of the deep tropics exceed the known variation of extratropical salamanders, which also differ in being less restricted in elevational range. Salamanders display “tropicality” in that although speciose, they are usually local in distribution and rare. They display strong ecological and physiological differentiation that may contribute importantly to morphological divergence and species formation.
Resumo:
We report new evidence that bears decisively on a long-standing controversy in primate systematics. DNA sequence data for the complete cytochrome b gene, combined with an expanded morphological data set, confirm the results of a previous study and again indicate that all extant Malagasy lemurs originated from a single common ancestor. These results, as well as those from other genetic studies, call for a revision of primate classifications in which the dwarf and mouse lemurs are placed within the Afro-Asian lorisiforms. The phylogenetic results, in agreement with paleocontinental data, indicate an African origin for the common ancestor of lemurs and lorises (the Strepsirrhini). The molecular data further suggest the surprising conclusion that lemurs began evolving independently by the early Eocene at the latest. This indicates that the Malagasy primate lineage is more ancient than generally thought and places the split between the two strepsirrhine lineages well before the appearance of known Eocene fossil primates. We conclude that primate origins were marked by rapid speciation and diversification sometime before the late Paleocene.
Resumo:
DNA was extracted from the extinct American mastodon, the extinct woolly mammoth, and the modern Asian and African elephants to test the traditional morphologically based phylogeny within Elephantidae. Phylogenetic analyses of the aligned sequences of the mitochondrial gene cytochrome b support a monophyletic Asian elephant-woolly mammoth clade when the American mastodon is used as an outgroup. Previous molecular studies were unable to resolve the relationships of the woolly mammoth, Asian elephant, and African elephant because the sequences appear to have evolved at heterogeneous rates and inappropriate outgroups were used for analysis. The results demonstrate the usefulness of fossil molecular data from appropriate sister taxa for resolving phylogenies of highly derived or early radiating lineages.
Resumo:
Using allozymes and mtDNA sequences from the cytochrome b gene, we report that the brown kiwi has the highest levels of genetic structuring observed in birds. Moreover, the mtDNA sequences are, with two minor exceptions, diagnostic genetic markers for each population investigated, even though they are among the more slowly evolving coding regions in this genome. A major unexpected finding was the concordant split in molecular phylogenies between brown kiwis in the southern South Island and elsewhere in New Zealand. This basic phylogeographic boundary halfway down the South Island coincides with a fixed allele difference in the Hb nuclear locus and strongly suggests that two morphologically cryptic species are currently merged under one polytypic species. This is another striking example of how molecular genetic assays can detect phylogenetic discontinuities that are not reflected in traditional morphologically based taxonomies. However, reanalysis of the morphological characters by using phylogenetic methods revealed that the reason for this discordance is that most are primitive and thus are phylogenetically uninformative. Shared-derived morphological characters support the same relationships evident in the molecular phylogenies and, in concert with the molecular data, suggest that as brown kiwis colonized northward from the southern South Island, they retained many primitive characters that confounded earlier systematists. Strong subdivided population structure and cryptic species in brown kiwis seem to have evolved relatively recently as a consequence of Pleistocene range disjunctions, low dispersal power, and genetic drift in small populations.
Resumo:
Cytochrome c552 from Hydrogenobacter thermophilus, a thermophilic bacterium, has been converted into a b type cytochrome, after mutagenesis of both heme-binding cysteines to alanine and expression in the cytoplasm of Escherichia coli. The b type variant is less stable, with the guanidine hydrochloride unfolding midpoint occurring at a concentration 2 M lower than for the wild-type protein. The reduction potential is 75 mV lower than that of the recombinant wild-type protein. The heme can be removed from the b type variant, thus generating an apo protein that has, according to circular dichroism spectroscopy, an α-helical content different from that of the holo b type protein. The latter is readily reformed in vitro by addition of heme to the apo protein. This reforming suggests that previously observed assembly of cytochrome c552, which has the typical class I cytochrome c fold, in the E. coli cytoplasm is a consequence of spontaneous thioether bond formation after binding of heme to a prefolded polypeptide. These observations have implications for the general problem of c type cytochrome biogenesis.
Resumo:
Induction of cytochrome P4501A1 (CYP1A1) in the hepatoma Hepa1c1c7 cell line results in an elevation in the excretion rate of 8-oxoguanine (oxo8Gua), a biomarker of oxidative DNA damage and the major repair product of 8-oxo-2'-deoxyguanosine (oxo8dG) residues in DNA. Treatment of this cell line with 2,3,7,8-tetrachloro-p-dibenzodioxin (TCDD), a nonmetabolized environmental contaminant, and indolo(3,2-b)carbazole (ICZ), a metabolite of a natural pesticide found in cruciferous vegetables, is shown to both induce CYP1A1 activity and elevate the excretion rate of oxo8Gua; 7,8-benzoflavone (7,8-BF or alpha-naphthoflavone), an inhibitor of CYP1A1 activity and an antagonist of the aryl hydrocarbon (Ah) receptor, reduced the excretion rate of oxo8Gua. The essential role of Ah-receptor, which mediates the induction of CYP1A1, is shown by the inability of TCDD to induce CYP1A1 and to increase excretion of oxo8Gua in Ah receptor-defective c4 mutant cells. While there was a significant 7.0-fold increase over 2 days in the excretion rate of oxo8Gua into the growth medium of TCDD-treated Hepa1c1c7 cells compared to control, no significant increase was detected in the steady-state level of oxo8dG in the DNA presumably due to efficient DNA repair. Thus, the induction of CYP1A1 appears to lead to a leak of oxygen radicals and consequent oxidative DNA damage that could lead to mutation and cancer.
Resumo:
Direct evidence is presented in support of the longstanding but unproven hypothesis that B lymphocytes specific for self antigens (Ags) can be used in the immune response to foreign Ags. We show that the B cells in BALB/c mic responding early to pigeon cytochrome c (CYT) produce antibodies that recognize and bind the major antigenic site on mouse CYT with greater affinity than they bind pigeon CYT i.e., they are heteroclitic for the self Ag. Furthermore, these B cells express the same combination of immunoglobulin variable region (V) genes that are known to be used in B-cell recognition of mouse CYT. Over time, the response to pigeon CYT becomes more specific for the foreign Ag through the recruitment of B cells expressing different combinations of V genes and, possibly, somatic mutation of the mouse CYT specific B cells from early in the response. Cross-recognition of pigeon CYT by mouse CYT-specific B cells results from the sharing of critical amino acid residues by the two Ags. Although B-cell recognition of the self Ag, mouse CYT, is very specific, which limits the extent to which foreign Ags can cross-activate the autoreactive B cells, it is possible that polyreactive B cells to other self Ags may be used more frequently in response to foreign Ags.