2 resultados para CU(I)
em National Center for Biotechnology Information - NCBI
Resumo:
Light-induced damage to photosystem I (PSI) was studied during low-light illumination of barley (Hordeum vulgare L.) at chilling temperatures. A 4-h illumination period induced a significant inactivation of PSI electron transport activity. Flash-induced P700 absorption decay measurements revealed progressive damage to (a) the iron-sulfur clusters FA and FB, (b) the iron-sulfur clusters FA, FB, and FX, and (c) the phylloquinone A1 and the chlorophyll A0 or P700 of the PSI electron acceptor chain. Light-induced PSI damage was also evidenced by partial degradation of the PSI-A and PSI-B proteins and was correlated with the appearance of smaller proteins. Aggravated photodamage was observed upon illumination of barley leaves infiltrated with KCN, which inhibits Cu,Zn-superoxide dismutase and ascorbate peroxidase. This indicates that the photodamage of PSI in barley observed during low-light illumination at chilling temperatures arises because the defense against active oxygen species by active oxygen-scavenging enzymes is insufficient at these specific conditions. The data obtained demonstrate that photoinhibition of PSI at chilling temperatures is an important phenomenon in a cold-tolerant plant species.
Resumo:
Cu/Zn superoxide dismutase (Cu/Zn SOD) is a key enzyme in the metabolism of oxygen free radicals. The gene resides on chromosome 21 and is overexpressed in patients with Down syndrome. Cultured neurons of transgenic Cu/Zn SOD (Tg-Cu/Zn SOD) mice with elevated activity of Cu/Zn SOD were used to determine whether constitutive overexpression of Cu/Zn SOD creates an indigenous oxidative stress that predisposes the Tg-Cu/Zn SOD neurons to added insults. Neurons from three independently derived Tg-Cu/Zn SOD strains showed higher susceptibility than nontransgenic neurons to kainic acid (KA)-mediated excitotoxicity, reflected by an earlier onset and enhanced apoptotic cell death. This higher susceptibility of transgenic neurons to KA-mediated apoptosis was associated with a chronic prooxidant state that was manifested by reduced levels of cellular glutathione and altered [Ca2+]i homeostasis. The data are compatible with the thesis that overexpression of Cu/Zn SOD creates chronic oxidative stress in the transgenic neurons, which exacerbates their susceptibility to additional insults such as KA-mediated excitotoxicity.