2 resultados para CT-based spinal navigation

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Substance P plays an important role in the transmission of pain-related information in the dorsal horn of the spinal cord. Recent immunocytochemical studies have shown a mismatch between the distribution of substance P and its receptor in the superficial laminae of the dorsal horn. Because such a mismatch was not observed by using classical radioligand binding studies, we decided to investigate further the issue of the relationship between substance P and its receptor by using an antibody raised against a portion of the carboxyl terminal of the neurokinin 1 receptor and a bispecific monoclonal antibodies against substance P and horseradish peroxidase. Light microscopy revealed a good correlation between the distributions of substance P and the neurokinin 1 receptor, both being localized with highest densities in lamina I and outer lamina II of the spinal dorsal horn. An ultrastructural double-labeling study, combining preembedding immunogold with enzyme-based immunocytochemistry, showed that most neurokinin 1 receptor immunoreactive dendrites were apposed by substance P containing boutons. A detailed quantitative analysis revealed that neurokinin 1 receptor immunoreactive dendrites received more appositions and synapses from substance P immunoreactive terminals than those not expressing the neurokinin 1 receptor. Such preferential innervation by substance P occurred in all superficial dorsal horn laminae even though neurokinin 1 receptor immunoreactive dendrites were a minority of the total number of dendritic profiles in the above laminae. These results suggest that, contrary to the belief that neuropeptides act in a diffuse manner at a considerable distance from their sites of release, substance P should act on profiles expressing the neurokinin 1 receptor at a short distance from its site of release.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Internet has created new opportunities for librarians to develop information systems that are readily accessible at the point of care. This paper describes the multiyear process used to justify, fund, design, develop, promote, and evaluate a rehabilitation prototype of a point-of-care, team-based information system (PoinTIS) and train health care providers to use this prototype for their spinal cord injury and traumatic brain injury patient care and education activities. PoinTIS is a successful model for librarians in the twenty-first century to serve as publishers of information created or used by their parent organizations and to respond to the opportunities for information dissemination provided by recent technological advances.