24 resultados para CORONARY

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Angioplasty procedures are increasingly used to reestablish blood flow in blocked atherosclerotic coronary arteries. A serious complication of these procedures is reocclusion (restenosis), which occurs in 30–50% of patients. Migration of coronary artery smooth muscle cells (CASMCs) to the site of injury caused by angioplasty and subsequent proliferation are suggested mechanisms of reocclusion. Using both cultured human CASMCs and coronary atherectomy tissues, we studied the roles of osteopontin (OPN) and one of its receptors, αvβ3 integrin, in the pathogenesis of coronary restenosis. We also measured the plasma levels of OPN before and after angioplasty and determined the effect of exogenous OPN on CASMC migration, extracellular matrix invasion, and proliferation. We found that cultured CASMCs during log phase of growth and smooth muscle cell layer of the coronary atherosclerotic tissues of patients express both OPN mRNA and protein at a significantly elevated level compared with controls. Interestingly, whereas the baseline plasma OPN levels in control samples were virtually undetectable, those in patient plasma were remarkably high. We also found that interaction of OPN with αvβ3 integrin, expressed on CASMCs, causes migration, extracellular matrix invasion, and proliferation. These effects were abolished when OPN or αvβ3 integrin gene expression in CASMCs was inhibited by specific antisense S-oligonucleotide treatment or OPN-αvβ3 interaction was blocked by treatment of CASMCs with antibodies against OPN or αvβ3 integrin. Our results demonstrate that OPN and αvβ3 integrin play critical roles in regulating cellular functions deemed essential for restenosis. In addition, these results raise the possibility that transient inhibition of OPN gene expression or blocking of OPN-αvβ3 interaction may provide a therapeutic approach to preventing restenosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A synchronized heart beat is controlled by pacemaking impulses conducted through Purkinje fibers. In chicks, these impulse-conducting cells are recruited during embryogenesis from myocytes in direct association with developing coronary arteries. In culture, the vascular cytokine endothelin converts embryonic myocytes to Purkinje cells, implying that selection of conduction phenotype may be mediated by an instructive cue from arteries. To investigate this hypothesis, coronary arterial development in the chicken embryo was either inhibited by neural crest ablation or activated by ectopic expression of fibroblast growth factor (FGF). Ablation of cardiac neural crest resulted in ≈70% reductions (P < 0.01) in the density of intramural coronary arteries and associated Purkinje fibers. Activation of coronary arterial branching was induced by retrovirus-mediated overexpression of FGF. At sites of FGF-induced hypervascularization, ectopic Purkinje fibers differentiated adjacent to newly induced coronary arteries. Our data indicate the necessity and sufficiency of developing arterial bed for converting a juxtaposed myocyte into a Purkinje fiber cell and provide evidence for an inductive function for arteriogenesis in heart development distinct from its role in establishing coronary blood circulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipocalin-type prostaglandin D synthase (L-PGDS) is localized in the central nervous system and male genital organs of various mammals and is secreted as β-trace into the closed compartment of these tissues separated from the systemic circulation. In this study, we found that the mRNA for the human enzyme was expressed most intensely in the heart among various tissues examined. In human autopsy specimens, the enzyme was localized immunocytochemically in myocardial cells, atrial endocardial cells, and a synthetic phenotype of smooth muscle cells in the arteriosclerotic intima, and accumulated in the atherosclerotic plaque of coronary arteries with severe stenosis. In patients with stable angina (75–99% stenosis), the plasma level of L-PGDS was significantly (P < 0.05) higher in the great cardiac vein (0.694 ± 0.054 μg/ml, n = 7) than in the coronary artery (0.545 ± 0.034 μg/ml), as determined by a sandwich enzyme immunoassay. However, the veno-arterial difference in the plasma L-PGDS concentration was not observed in normal subjects without stenosis. After a percutaneous transluminal coronary angioplasty was performed to compress the stenotic atherosclerotic plaques, the L-PGDS concentration in the cardiac vein decreased significantly (P < 0.05) to 0.610 ± 0.051 μg/ml at 20 min and reached the arterial level within 1 h. These findings suggest that L-PGDS is present in both endocardium and myocardium of normal subjects and the stenotic site of patients with stable angina and is secreted into the coronary circulation.