6 resultados para CONGO

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have been able to convert a small α/β protein, acylphosphatase, from its soluble and native form into insoluble amyloid fibrils of the type observed in a range of pathological conditions. This was achieved by allowing slow growth in a solution containing moderate concentrations of trifluoroethanol. When analyzed with electron microscopy, the protein aggregate present in the sample after long incubation times consisted of extended, unbranched filaments of 30–50 Å in width that assemble subsequently into higher order structures. This fibrillar material possesses extensive β-sheet structure as revealed by far-UV CD and IR spectroscopy. Furthermore, the fibrils exhibit Congo red birefringence, increased fluorescence with thioflavine T and cause a red-shift of the Congo red absorption spectrum. All of these characteristics are typical of amyloid fibrils. The results indicate that formation of amyloid occurs when the native fold of a protein is destabilized under conditions in which noncovalent interactions, and in particular hydrogen bonding, within the polypeptide chain remain favorable. We suggest that amyloid formation is not restricted to a small number of protein sequences but is a property common to many, if not all, natural polypeptide chains under appropriate conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The SH3 domain is a well characterized small protein module with a simple fold found in many proteins. At acid pH, the SH3 domain (PI3-SH3) of the p85α subunit of bovine phosphatidylinositol 3-kinase slowly forms a gel that consists of typical amyloid fibrils as assessed by electron microscopy, a Congo red binding assay, and x-ray fiber diffraction. The soluble form of PI3-SH3 at acid pH (the A state by a variety of techniques) from which fibrils are generated has been characterized. Circular dichroism in the far- and near-UV regions and 1H NMR indicate that the A state is substantially unfolded relative to the native protein at neutral pH. NMR diffusion measurements indicate, however, that the effective hydrodynamic radius of the A state is only 23% higher than that of the native protein and is 20% lower than that of the protein denatured in 3.5 M guanidinium chloride. In addition, the A state binds the hydrophobic dye 1-anilinonaphthalene-8-sulfonic acid, which suggests that SH3 in this state has a partially formed hydrophobic core. These results indicate that the A state is partially folded and support the hypothesis that partially folded states formed in solution are precursors of amyloid deposition. Moreover, that this domain aggregates into amyloid fibrils suggests that the potential for amyloid deposition may be a common property of proteins, and not only of a few proteins associated with disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A major activity of molecular chaperones is to prevent aggregation and refold misfolded proteins. However, when allowed to form, protein aggregates are refolded poorly by most chaperones. We show here that the sequential action of two Escherichia coli chaperone systems, ClpB and DnaK-DnaJ-GrpE, can efficiently solubilize excess amounts of protein aggregates and refold them into active proteins. Measurements of aggregate turbidity, Congo red, and 4,4′-dianilino-1,1′-binaphthyl-5,5′-disulfonic acid binding, and of the disaggregation/refolding kinetics by using a specific ClpB inhibitor, suggest a mechanism where (i) ClpB directly binds protein aggregates, ATP induces structural changes in ClpB, which (ii) increase hydrophobic exposure of the aggregates and (iii) allow DnaK-DnaJ-GrpE to bind and mediate dissociation and refolding of solubilized polypeptides into native proteins. This efficient mechanism, whereby chaperones can catalytically solubilize and refold a wide variety of large and stable protein aggregates, is a major addition to the molecular arsenal of the cell to cope with protein damage induced by stress or pathological states.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mutations in the amyloid precursor protein (APP) gene cause early-onset familial Alzheimer disease (AD) by affecting the formation of the amyloid β (Aβ) peptide, the major constituent of AD plaques. We expressed human APP751 containing these mutations in the brains of transgenic mice. Two transgenic mouse lines develop pathological features reminiscent of AD. The degree of pathology depends on expression levels and specific mutations. A 2-fold overexpression of human APP with the Swedish double mutation at positions 670/671 combined with the V717I mutation causes Aβ deposition in neocortex and hippocampus of 18-month-old transgenic mice. The deposits are mostly of the diffuse type; however, some congophilic plaques can be detected. In mice with 7-fold overexpression of human APP harboring the Swedish mutation alone, typical plaques appear at 6 months, which increase with age and are Congo Red-positive at first detection. These congophilic plaques are accompanied by neuritic changes and dystrophic cholinergic fibers. Furthermore, inflammatory processes indicated by a massive glial reaction are apparent. Most notably, plaques are immunoreactive for hyperphosphorylated tau, reminiscent of early tau pathology. The immunoreactivity is exclusively found in congophilic senile plaques of both lines. In the higher expressing line, elevated tau phosphorylation can be demonstrated biochemically in 6-month-old animals and increases with age. These mice resemble major features of AD pathology and suggest a central role of Aβ in the pathogenesis of the disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

X-ray diffraction and other biophysical tools reveal features of the atomic structure of an amyloid-like crystal. Sup35, a prion-like protein in yeast, forms fibrillar amyloid assemblies intrinsic to its prion function. We have identified a polar peptide from the N-terminal prion-determining domain of Sup35 that exhibits the amyloid properties of full-length Sup35, including cooperative kinetics of aggregation, fibril formation, binding of the dye Congo red, and the characteristic cross-β x-ray diffraction pattern. Microcrystals of this peptide also share the principal properties of the fibrillar amyloid, including a highly stable, β-sheet-rich structure and the binding of Congo red. The x-ray powder pattern of the microcrystals, extending to 0.9-Å resolution, yields the unit cell dimensions of the well-ordered structure. These dimensions restrict possible atomic models of this amyloid-like structure and demonstrate that it forms packed, parallel-stranded β-sheets. The unusually high density of the crystals shows that the packed β-sheets are dehydrated, despite the polar character of the side chains. These results suggest that amyloid is a highly intermolecularly bonded, dehydrated array of densely packed β-sheets. This dry β-sheet could form as Sup35 partially unfolds to expose the peptide, permitting it to hydrogen-bond to the same peptide of other Sup35 molecules. The implication is that amyloid-forming units may be short segments of proteins, exposed for interactions by partial unfolding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 16-amino acid oligopeptide forms a stable β-sheet structure in water. In physiological solutions it is able to self-assemble to form a macroscopic matrix that stains with Congo red. On raising the temperature of the aqueous solution above 70°C, an abrupt structural transition occurs in the CD spectra from a β-sheet to a stable α-helix without a detectable random-coil intermediate. With cooling, it retained the α-helical form and took several weeks at room temperature to partially return to the β-sheet form. Slow formation of the stable β-sheet structure thus shows kinetic irreversibility. Such a formation of very stable β-sheet structures is found in the amyloid of a number of neurological diseases. This oligopeptide could be a model system for studying the protein conformational changes that occurs in scrapie or Alzheimer disease. The abrupt and direct conversion from a β-sheet to an α-helix may also be found in other processes, such as protein folding and protein–protein interaction. Furthermore, such drastic structure changes may also be exploited in biomaterials designed as sensors to detect environmental changes.