9 resultados para CONFINED POLYMER MELTS
em National Center for Biotechnology Information - NCBI
Resumo:
The fluorescence of a polyanionic conjugated polymer can be quenched by extremely low concentrations of cationic electron acceptors in aqueous solutions. We report a greater than million-fold amplification of the sensitivity to fluorescence quenching compared with corresponding “molecular excited states.” Using a combination of steady-state and ultrafast spectroscopy, we have established that the dramatic quenching results from weak complex formation [polymer(−)/quencher(+)], followed by ultrafast electron transfer from excitations on the entire polymer chain to the quencher, with a time constant of 650 fs. Because of the weak complex formation, the quenching can be selectively reversed by using a quencher-recognition diad. We have constructed such a diad and demonstrate that the fluorescence is fully recovered on binding between the recognition site and a specific analyte protein. In both solutions and thin films, this reversible fluorescence quenching provides the basis for a new class of highly sensitive biological and chemical sensors.
Resumo:
Damage to peripheral nerves often cannot be repaired by the juxtaposition of the severed nerve ends. Surgeons have typically used autologous nerve grafts, which have several drawbacks including the need for multiple surgical procedures and loss of function at the donor site. As an alternative, the use of nerve guidance channels to bridge the gap between severed nerve ends is being explored. In this paper, the electrically conductive polymer—oxidized polypyrrole (PP)—has been evaluated for use as a substrate to enhance nerve cell interactions in culture as a first step toward potentially using such polymers to stimulate in vivo nerve regeneration. Image analysis demonstrates that PC-12 cells and primary chicken sciatic nerve explants attached and extended neurites equally well on both PP films and tissue culture polystyrene in the absence of electrical stimulation. In contrast, PC-12 cells interacted poorly with indium tin oxide (ITO), poly(l-lactic acid) (PLA), and poly(lactic acid-co-glycolic acid) surfaces. However, PC-12 cells cultured on PP films and subjected to an electrical stimulus through the film showed a significant increase in neurite lengths compared with ones that were not subjected to electrical stimulation through the film and tissue culture polystyrene controls. The median neurite length for PC-12 cells grown on PP and subjected to an electrical stimulus was 18.14 μm (n = 5643) compared with 9.5 μm (n = 4440) for controls. Furthermore, animal implantation studies reveal that PP invokes little adverse tissue response compared with poly(lactic acid-co-glycolic acid).
Resumo:
Asparaginyl-tRNA (Asn-tRNA) and glutaminyl-tRNA (Gln-tRNA) are essential components of protein synthesis. They can be formed by direct acylation by asparaginyl-tRNA synthetase (AsnRS) or glutaminyl-tRNA synthetase (GlnRS). The alternative route involves transamidation of incorrectly charged tRNA. Examination of the preliminary genomic sequence of the radiation-resistant bacterium Deinococcus radiodurans suggests the presence of both direct and indirect routes of Asn-tRNA and Gln-tRNA formation. Biochemical experiments demonstrate the presence of AsnRS and GlnRS, as well as glutamyl-tRNA synthetase (GluRS), a discriminating and a nondiscriminating aspartyl-tRNA synthetase (AspRS). Moreover, both Gln-tRNA and Asn-tRNA transamidation activities are present. Surprisingly, they are catalyzed by a single enzyme encoded by three ORFs orthologous to Bacillus subtilis gatCAB. However, the transamidation route to Gln-tRNA formation is idled by the inability of the discriminating D. radiodurans GluRS to produce the required mischarged Glu-tRNAGln substrate. The presence of apparently redundant complete routes to Asn-tRNA formation, combined with the absence from the D. radiodurans genome of genes encoding tRNA-independent asparagine synthetase and the lack of this enzyme in D. radiodurans extracts, suggests that the gatCAB genes may be responsible for biosynthesis of asparagine in this asparagine prototroph.
Resumo:
A quantitative model of interphase chromosome higher-order structure is presented based on the isochore model of the genome and results obtained in the field of copolymer research. G1 chromosomes are approximated in the model as multiblock copolymers of the 30-nm chromatin fiber, which alternately contain two types of 0.5- to 1-Mbp blocks (R and G minibands) differing in GC content and DNA-bound proteins. A G1 chromosome forms a single-chain string of loop clusters (micelles), with each loop ∼1–2 Mbp in size. The number of ∼20 loops per micelle was estimated from the dependence of geometrical versus genomic distances between two points on a G1 chromosome. The greater degree of chromatin extension in R versus G minibands and a difference in the replication time for these minibands (early S phase for R versus late S phase for G) are explained in this model as a result of the location of R minibands at micelle cores and G minibands at loop apices. The estimated number of micelles per nucleus is close to the observed number of replication clusters at the onset of S phase. A relationship between chromosomal and nuclear sizes for several types of higher eukaryotic cells (insects, plants, and mammals) is well described through the micelle structure of interphase chromosomes. For yeast cells, this relationship is described by a linear coil configuration of chromosomes.
Resumo:
Polymers tied together by constraints exhibit an internal pressure; this idea is used to analyze physical properties of the bottle-brush–like chromosomes of meiotic prophase that consist of polymer-like flexible chromatin loops, attached to a central axis. Using a minimal number of experimental parameters, semiquantitative predictions are made for the bending rigidity, radius, and axial tension of such brushes, and the repulsion acting between brushes whose bristles are forced to overlap. The retraction of lampbrush loops when the nascent transcripts are stripped away, the oval shape of diplotene bivalents between chiasmata, and the rigidity of pachytene chromosomes are all manifestations of chromatin pressure. This two-phase (chromatin plus buffer) picture that suffices for meiotic chromosomes has to be supplemented by a third constituent, a chromatin glue to understand mitotic chromosomes, and explain how condensation can drive the resolution of entanglements. This process resembles a thermal annealing in that a parameter (the affinity of the glue for chromatin and/or the affinity of the chromatin for buffer) has to be tuned to achieve optimal results. Mechanical measurements to characterize this protein–chromatin matrix are proposed. Finally, the propensity for even slightly chemically dissimilar polymers to phase separate (cluster like with like) can explain the apparent segregation of the chromatin into A+T- and G+C-rich regions revealed by chromosome banding.
Resumo:
Random walks have been used to describe a wide variety of systems ranging from cell colonies to polymers. Sixty-five years ago, Kuhn [Kuhn, W. (1934) Kolloid-Z. 68, 2–11] made the prediction, backed later by computer simulations, that the overall shape of a random-walk polymer is aspherical, yet no experimental work has directly tested Kuhn's general idea and subsequent computer simulations. By using fluorescence microscopy, we monitored the conformation of individual, long, random-walk polymers (fluorescently labeled DNA molecules) at equilibrium. We found that a polymer most frequently adopts highly extended, nonfractal structures with a strongly anisotropic shape. The ensemble-average ratio of the lengths of the long and short axes of the best-fit ellipse of the polymer was much larger than unity.
Resumo:
Most analyses of Brownian flocculation apply to conditions where London–van der Waals attractive forces cause particles to be strongly bound in a deep interparticle potential well. In this paper, results are reported that show the interaction between primary- and secondary-minimum flocculation when the interparticle potential curve reflects both attractive and electrostatic repulsive forces. The process is highly time-dependent because of transfer of particles from secondary- to primary-minimum flocculation. Essential features of the analysis are corroborated by experiments with 0.80-μm polystyrene spheres suspended in aqueous solutions of NaCl over a range of ionic strengths. In all cases, experiments were restricted to the initial stage of coagulation, where singlets and doublets predominate.
Resumo:
We describe a method for generating a variety of chemically diverse broadly responsive low-power vapor sensors. The chemical polymerization of pyrrole in the presence of plasticizers has yielded conducting organic polymer films whose resistivities are sensitive to the identity and concentration of various vapors in air. An array of such sensing elements produced a chemically reversible diagnostic pattern of electrical resistance changes upon exposure to different odorants. Principal component analysis has demonstrated that such sensors can identify and quantify different airborne organic solvents and can yield information on the components of gas mixtures.