2 resultados para COMPARATIVE IN-VITRO

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we describe the in vitro reconstitution of photosystem I light-harvesting complexes with pigments and proteins (Lhca1 and Lhca4) obtained by overexpression of tomato Lhca genes in Escherichia coli. Using Lhca1 and Lhca4 individually for reconstitution results in monomeric pigment-proteins, whereas a combination thereof yields a dimeric complex. Interactions of the apoproteins is highly specific, as reconstitution of either of the two constituent proteins in combination with a light-harvesting protein of photosystem II does not result in dimerization. The reconstituted Lhca1/4, but not complexes obtained with either Lhca1 or Lhca4 alone, closely resembles the native LHCI-730 dimer from tomato leaves with regard to spectroscopic properties, pigment composition, and stoichiometry. Monomeric complexes of Lhca1 or Lhca4 possess lower pigment/protein ratios, indicating that interactions of the two subunits not only facilitates pigment reorganization but also recruitment of additional pigments. In addition to higher averages of chlorophyll a/b ratios in monomeric complexes than in LHCI-730, comparative fluorescence and CD spectra demonstrate that heterodimerization involves preferential ligation of more chlorophyll b.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An in vitro selection technique was used to identify a specific high-affinity DNA ligand targeted to human neutrophil elastase (HNE). 1H NMR data and a comparative analysis of the selected sequences suggest that the DNA folds into a G-quartet structure with duplexed ends. The high-affinity binding DNA alone did not inhibit the enzymatic activity of HNE. The DNA was covalently attached to a tetrapeptide, N-methoxysuccinyl-Ala-Ala-Pro-Val, that is a weak competitive inhibitor of HNE. HNE was inhibited by this DNA-peptide conjugate nearly five orders of magnitude more effectively than by the peptide alone. These results demonstrate that in vitro-selected nucleic acids can be used as a vehicle for molecular delivery.