12 resultados para CLUSTER ANALYSIS
em National Center for Biotechnology Information - NCBI
Resumo:
A system of cluster analysis for genome-wide expression data from DNA microarray hybridization is described that uses standard statistical algorithms to arrange genes according to similarity in pattern of gene expression. The output is displayed graphically, conveying the clustering and the underlying expression data simultaneously in a form intuitive for biologists. We have found in the budding yeast Saccharomyces cerevisiae that clustering gene expression data groups together efficiently genes of known similar function, and we find a similar tendency in human data. Thus patterns seen in genome-wide expression experiments can be interpreted as indications of the status of cellular processes. Also, coexpression of genes of known function with poorly characterized or novel genes may provide a simple means of gaining leads to the functions of many genes for which information is not available currently.
Resumo:
Varicella-zoster virus open reading frame 10 (ORF10) protein, the homolog of the herpes simplex virus protein VP16, can transactivate immediate-early promoters from both viruses. A protein sequence comparison procedure termed hydrophobic cluster analysis was used to identify a motif centered at Phe-28, near the amino terminus of ORF10, that strongly resembles the sequence of the activating domain surrounding Phe-442 of VP16. With a series of GAL4-ORF10 fusion proteins, we mapped the ORF10 transcriptional-activation domain to the amino-terminal region (aa 5-79). Extensive mutagenesis of Phe-28 in GAL4-ORF10 fusion proteins demonstrated the importance of an aromatic or bulky hydrophobic amino acid at this position, as shown previously for Phe-442 of VP16. Transactivation by the native ORF10 protein was abolished when Phe-28 was replaced by Ala. Similar amino-terminal domains were identified in the VP16 homologs of other alphaherpesviruses. Hydrophobic cluster analysis correctly predicted activation domains of ORF10 and VP16 that share critical characteristics of a distinctive subclass of acidic activation domains.
Resumo:
The molecular mechanisms of pulmonary fibrosis are poorly understood. We have used oligonucleotide arrays to analyze the gene expression programs that underlie pulmonary fibrosis in response to bleomycin, a drug that causes lung inflammation and fibrosis, in two strains of susceptible mice (129 and C57BL/6). We then compared the gene expression patterns in these mice with 129 mice carrying a null mutation in the epithelial-restricted integrin β6 subunit (β6−/−), which develop inflammation but are protected from pulmonary fibrosis. Cluster analysis identified two distinct groups of genes involved in the inflammatory and fibrotic responses. Analysis of gene expression at multiple time points after bleomycin administration revealed sequential induction of subsets of genes that characterize each response. The availability of this comprehensive data set should accelerate the development of more effective strategies for intervention at the various stages in the development of fibrotic diseases of the lungs and other organs.
Resumo:
Early detection is an effective means of reducing cancer mortality. Here, we describe a highly sensitive high-throughput screen that can identify panels of markers for the early detection of solid tumor cells disseminated in peripheral blood. The method is a two-step combination of differential display and high-sensitivity cDNA arrays. In a primary screen, differential display identified 170 candidate marker genes differentially expressed between breast tumor cells and normal breast epithelial cells. In a secondary screen, high-sensitivity arrays assessed expression levels of these genes in 48 blood samples, 22 from healthy volunteers and 26 from breast cancer patients. Cluster analysis identified a group of 12 genes that were elevated in the blood of cancer patients. Permutation analysis of individual genes defined five core genes (P ≤ 0.05, permax test). As a group, the 12 genes generally distinguished accurately between healthy volunteers and patients with breast cancer. Mean expression levels of the 12 genes were elevated in 77% (10 of 13) untreated invasive cancer patients, whereas cluster analysis correctly classified volunteers and patients (P = 0.0022, Fisher's exact test). Quantitative real-time PCR confirmed array results and indicated that the sensitivity of the assay (1:2 × 108 transcripts) was sufficient to detect disseminated solid tumor cells in blood. Expression-based blood assays developed with the screening approach described here have the potential to detect and classify solid tumor cells originating from virtually any primary site in the body.
Resumo:
The transcriptional effects of deregulated myc gene overexpression are implicated in tumorigenesis in a spectrum of experimental and naturally occurring neoplasms. In follicles of the chicken bursa of Fabricius, myc induction of B-cell neoplasia requires a target cell population present during early bursal development and progresses through preneoplastic transformed follicles to metastatic lymphomas. We developed a chicken immune system cDNA microarray to analyze broad changes in gene expression that occur during normal embryonic B-cell development and during myc-induced neoplastic transformation in the bursa. The number of mRNAs showing at least 3-fold change was greater during myc-induced lymphomagenesis than during normal development, and hierarchical cluster analysis of expression patterns revealed that levels of several hundred mRNAs varied in concert with levels of myc overexpression. A set of 41 mRNAs were most consistently elevated in myc-overexpressing preneoplastic and neoplastic cells, most involved in processes thought to be subject to regulation by Myc. The mRNAs for another cluster of genes were overexpressed in neoplasia independent of myc expression level, including a small subset with the expression signature of embryonic bursal lymphocytes. Overexpression of myc, and some of the genes overexpressed with myc, may be important for generation of preneoplastic transformed follicles. However, expression profiles of late metastatic tumors showed a large variation in concert with myc expression levels, and some showed minimal myc overexpression. Therefore, high-level myc overexpression may be more important in the early induction of these lymphomas than in maintenance of late-stage metastases.
Resumo:
The adenylate uridylate-rich elements (AREs) mediate the rapid turnover of mRNAs encoding proteins that regulate cellular growth and body response to exogenous agents such as microbes, inflammatory and environmental stimuli. However, the full repertoire of ARE-containing mRNAs is unknown. Here, we explore the distribution of AREs in human mRNA sequences. Computational derivation of a 13-bp ARE pattern was performed using multiple expectation maximization for motif elicitations (MEME) and consensus analyses. This pattern was statistically validated for the specificity towards the 3′-untranslated region and not coding region. The computationally derived ARE pattern is the basis of a database which contains non-redundant full-length ARE-mRNAs. The ARE-mRNA database (ARED; http://rc.kfshrc.edu.sa/ared) reveals that ARE-mRNAs encode a wide repertoire of functionally diverse proteins that belong to different biological processes and are important in several disease states. Cluster analysis was performed using the ARE sequences to demonstrate potential relationships between the type and number of ARE motifs, and the functional characteristics of the proteins.
Resumo:
We have systematically characterized gene expression patterns in 49 adult and embryonic mouse tissues by using cDNA microarrays with 18,816 mouse cDNAs. Cluster analysis defined sets of genes that were expressed ubiquitously or in similar groups of tissues such as digestive organs and muscle. Clustering of expression profiles was observed in embryonic brain, postnatal cerebellum, and adult olfactory bulb, reflecting similarities in neurogenesis and remodeling. Finally, clustering genes coding for known enzymes into 78 metabolic pathways revealed a surprising coordination of expression within each pathway among different tissues. On the other hand, a more detailed examination of glycolysis revealed tissue-specific differences in profiles of key regulatory enzymes. Thus, by surveying global gene expression by using microarrays with a large number of elements, we provide insights into the commonality and diversity of pathways responsible for the development and maintenance of the mammalian body plan.
Resumo:
The transcriptional response to epidermal growth factor (EGF) was examined in a cultured cell model of adhesion. Gene expression was monitored in human embryonic kidney cells (HEK293) after attachment of cells to the extracellular matrix (ECM) proteins, laminin, and fibronectin, by using complementary DNA micorarrays printed with 1,718 individual human genes. Cluster analysis revealed that the influence of EGF on gene expression, either positive or negative, was largely independent of ECM composition. However, clusters of EGF-regulated genes were identified that were diagnostic of the type of ECM proteins to which cells were attached. In these clusters, attachment of cells to a laminin or fibronectin substrata specifically modified the direction of gene expression changes in response to EGF stimulation. For example, in HEK293 cells attached to fibronectin, EGF stimulated an increase in the expression of some genes; however, genes in the same group were nonresponsive or even suppressed in cells attached to laminin. Many of the genes regulated by EGF and ECM proteins in this manner are involved in ECM and cytoskeletal architecture, protein synthesis, and cell cycle control, indicating that cell responses to EGF stimulation can be dramatically affected by ECM composition.
Resumo:
We have analyzed the developmental molecular programs of the mouse hippocampus, a cortical structure critical for learning and memory, by means of large-scale DNA microarray techniques. Of 11,000 genes and expressed sequence tags examined, 1,926 showed dynamic changes during hippocampal development from embryonic day 16 to postnatal day 30. Gene-cluster analysis was used to group these genes into 16 distinct clusters with striking patterns that appear to correlate with major developmental hallmarks and cellular events. These include genes involved in neuronal proliferation, differentiation, and synapse formation. A complete list of the transcriptional changes has been compiled into a comprehensive gene profile database (http://BrainGenomics.Princeton.edu), which should prove valuable in advancing our understanding of the molecular and genetic programs underlying both the development and the functions of the mammalian brain.
Resumo:
Local protein structure prediction efforts have consistently failed to exceed approximately 70% accuracy. We characterize the degeneracy of the mapping from local sequence to local structure responsible for this failure by investigating the extent to which similar sequence segments found in different proteins adopt similar three-dimensional structures. Sequence segments 3-15 residues in length from 154 different protein families are partitioned into neighborhoods containing segments with similar sequences using cluster analysis. The consistency of the sequence-to-structure mapping is assessed by comparing the local structures adopted by sequence segments in the same neighborhood in proteins of known structure. In the 154 families, 45% and 28% of the positions occur in neighborhoods in which one and two local structures predominate, respectively. The sequence patterns that characterize the neighborhoods in the first class probably include virtually all of the short sequence motifs in proteins that consistently occur in a particular local structure. These patterns, many of which occur in transitions between secondary structural elements, are an interesting combination of previously studied and novel motifs. The identification of sequence patterns that consistently occur in one or a small number of local structures in proteins should contribute to the prediction of protein structure from sequence.
Resumo:
The regions surrounding the catalytic amino acids previously identified in a few "retaining" O-glycosyl hydrolases (EC 3.2.1) have been analyzed by hydrophobic cluster analysis and have been used to define sequence motifs. These motifs have been found in more than 150 glycosyl hydrolase sequences representing at least eight established protein families that act on a large variety of substrates. This allows the localization and the precise role of the catalytic residues (nucleophile and acid catalyst) to be predicted for each of these enzymes, including several lysosomal glycosidases. An identical arrangement of the catalytic nucleophile was also found for S-glycosyl hydrolases (myrosinases; EC 3.2.3.1) for which the acid catalyst is lacking. A (beta/alpha)8 barrel structure has been reported for two of the eight families of proteins that have been grouped. It is suggested that the six other families also share this fold at their catalytic domain. These enzymes illustrate how evolutionary events led to a wide diversification of substrate specificity with a similar disposition of identical catalytic residues onto the same ancestral (beta/alpha)8 barrel structure.
Resumo:
In mammals, gonadal function is controlled by a hypothalamic signal generator that directs the pulsatile release of gonadotropin-releasing hormone (GnRH) and the consequent pulsatile secretion of luteinizing hormone. In female rhesus monkeys, the electrophysiological correlates of GnRH pulse generator activity are abrupt, rhythmic increases in hypothalamic multiunit activity (MUA volleys), which represent the simultaneous increase in firing rate of individual neurons. MUA volleys are arrested by estradiol, either spontaneously at midcycle or after the administration of the steroid. Multiunit recordings, however, provide only a measure of total neuronal activity, leaving the behavior of the individual cells obscure. This study was conducted to determine the mode of action of estradiol at the level of single neurons associated with the GnRH pulse generator. Twenty-three such single units were identified by cluster analysis of multiunit recordings obtained from a total of six electrodes implanted in the mediobasal hypothalamus of three ovariectomized rhesus monkeys, and their activity was monitored before and after estradiol administration. The bursting of all 23 units was arrested within 4 h of estradiol administration although their baseline activity was maintained. The bursts of most units reappeared at the same time as the MUA volleys, the recovery of some was delayed, and one remained inhibited for the duration of the study (43 days). The results indicate that estradiol does not desynchronize the bursting of single units associated with the GnRH pulse generator but that it inhibits this phenomenon. The site and mechanism of action of estradiol in this regard remain to be determined.