3 resultados para CLIBANARIUS-VITTATUS BOSC

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A number of cycling mammalian cells, such as NIH 3T3, contain abundant subsets of cold-stable microtubules. The origin of such microtubule stabilization in nonneuronal cells is unknown. We have previously described a neuronal protein, stable tubule-only polypeptide (STOP), that binds to microtubules and induces cold stability. We find that NIH 3T3 fibroblasts contain a major 42-kDa isoform of STOP (fibroblastic STOP, F-STOP). F-STOP contains the central repeats characteristic of brain STOP but shows extensive deletions of N- and C-terminal protein domains that are present in brain STOP. These deletions arise from differences in STOP RNA splicing. Despite such deletions, F-STOP has full microtubule stabilizing activity. F-STOP accumulates on cold-stable microtubules of interphase arrays and is present on stable microtubules within the mitotic spindle of NIH 3T3 cells. STOP inhibition by microinjection of affinity-purified STOP central repeat antibodies into NIH 3T3 cells abolishes both interphase and spindle microtubule cold stability. Similar results were obtained with Rat2 cells. These results show that STOP proteins have nonneuronal isoforms that are responsible for the microtubule cold stability observed in mammalian fibroblasts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Binding of erythropoietin (Epo) to the Epo receptor (EpoR) is crucial for production of mature red cells. Although it is well established that the Epo-bound EpoR is a dimer, it is not clear whether, in the absence of ligand, the intact EpoR is a monomer or oligomer. Using antibody-mediated immunofluorescence copatching (oligomerizing) of epitope-tagged receptors at the surface of live cells, we show herein that a major fraction of the full-length murine EpoR exists as preformed dimers/oligomers in BOSC cells, which are human embryo kidney 293T-derived cells. This observed oligomerization is specific because, under the same conditions, epitope-tagged EpoR did not oligomerize with several other tagged receptors (thrombopoietin receptor, transforming growth factor β receptor type II, or prolactin receptor). Strikingly, the EpoR transmembrane (TM) domain but not the extracellular or intracellular domains enabled the prolactin receptor to copatch with EpoR. Preformed EpoR oligomers are not constitutively active and Epo binding was required to induce signaling. In contrast to tyrosine kinase receptors (e.g., insulin receptor), which cannot signal when their TM domain is replaced by the strongly dimerizing TM domain of glycophorin A, the EpoR could tolerate the replacement of its TM domain with that of glycophorin A and retained signaling. We propose a model in which TM domain-induced dimerization maintains unliganded EpoR in an inactive state that can readily be switched to an active state by physiologic levels of Epo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nerve cells contain abundant subpopulations of cold-stable microtubules. We have previously isolated a calmodulin-regulated brain protein, STOP (stable tubule-only polypeptide), which reconstitutes microtubule cold stability when added to cold-labile microtubules in vitro. We have now cloned cDNA encoding STOP. We find that STOP is a 100.5-kDa protein with no homology to known proteins. The primary structure of STOP includes two distinct domains of repeated motifs. The central region of STOP contains 5 tandem repeats of 46 amino acids, 4 with 98% homology to the consensus sequence. The STOP C terminus contains 28 imperfect repeats of an 11-amino acid motif. STOP also contains a putative SH3-binding motif close to its N terminus. In vitro translated STOP binds to both microtubules and Ca2+-calmodulin. When STOP cDNA is expressed in cells that lack cold-stable microtubules, STOP associates with microtubules at 37 degrees C, and stabilizes microtubule networks, inducing cold stability, nocodazole resistance, and tubulin detyrosination on microtubules in transfected cells. We conclude that STOP must play an important role in the generation of microtubule cold stability and in the control of microtubule dynamics in brain.