4 resultados para CLASSIFICATIONS

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Data from three previous experiments were analyzed to test the hypothesis that brain waves of spoken or written words can be represented by the superposition of a few sine waves. First, we averaged the data over trials and a set of subjects, and, in one case, over experimental conditions as well. Next we applied a Fourier transform to the averaged data and selected those frequencies with high energy, in no case more than nine in number. The superpositions of these selected sine waves were taken as prototypes. The averaged unfiltered data were the test samples. The prototypes were used to classify the test samples according to a least-squares criterion of fit. The results were seven of seven correct classifications for the first experiment using only three frequencies, six of eight for the second experiment using nine frequencies, and eight of eight for the third experiment using five frequencies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Comparisons of codon frequencies of genes to several gene classes are used to characterize highly expressed and alien genes on the Synechocystis PCC6803 genome. The primary gene classes include the ensemble of all genes (average gene), ribosomal protein (RP) genes, translation processing factors (TF) and genes encoding chaperone/degradation proteins (CH). A gene is predicted highly expressed (PHX) if its codon usage is close to that of the RP/TF/CH standards but strongly deviant from the average gene. Putative alien (PA) genes are those for which codon usage is significantly different from all four classes of gene standards. In Synechocystis, 380 genes were identified as PHX. The genes with the highest predicted expression levels include many that encode proteins vital for photosynthesis. Nearly all of the genes of the RP/TF/CH gene classes are PHX. The principal glycolysis enzymes, which may also function in CO2 fixation, are PHX, while none of the genes encoding TCA cycle enzymes are PHX. The PA genes are mostly of unknown function or encode transposases. Several PA genes encode polypeptides that function in lipopolysaccharide biosynthesis. Both PHX and PA genes often form significant clusters (operons). The proteins encoded by PHX and PA genes are described with respect to functional classifications, their organization in the genome and their stoichiometry in multi-subunit complexes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As the number of protein folds is quite limited, a mode of analysis that will be increasingly common in the future, especially with the advent of structural genomics, is to survey and re-survey the finite parts list of folds from an expanding number of perspectives. We have developed a new resource, called PartsList, that lets one dynamically perform these comparative fold surveys. It is available on the web at http://bioinfo.mbb.yale.edu/partslist and http://www.partslist.org. The system is based on the existing fold classifications and functions as a form of companion annotation for them, providing ‘global views’ of many already completed fold surveys. The central idea in the system is that of comparison through ranking; PartsList will rank the approximately 420 folds based on more than 180 attributes. These include: (i) occurrence in a number of completely sequenced genomes (e.g. it will show the most common folds in the worm versus yeast); (ii) occurrence in the structure databank (e.g. most common folds in the PDB); (iii) both absolute and relative gene expression information (e.g. most changing folds in expression over the cell cycle); (iv) protein–protein interactions, based on experimental data in yeast and comprehensive PDB surveys (e.g. most interacting fold); (v) sensitivity to inserted transposons; (vi) the number of functions associated with the fold (e.g. most multi-functional folds); (vii) amino acid composition (e.g. most Cys-rich folds); (viii) protein motions (e.g. most mobile folds); and (ix) the level of similarity based on a comprehensive set of structural alignments (e.g. most structurally variable folds). The integration of whole-genome expression and protein–protein interaction data with structural information is a particularly novel feature of our system. We provide three ways of visualizing the rankings: a profiler emphasizing the progression of high and low ranks across many pre-selected attributes, a dynamic comparer for custom comparisons and a numerical rankings correlator. These allow one to directly compare very different attributes of a fold (e.g. expression level, genome occurrence and maximum motion) in the uniform numerical format of ranks. This uniform framework, in turn, highlights the way that the frequency of many of the attributes falls off with approximate power-law behavior (i.e. according to V–b, for attribute value V and constant exponent b), with a few folds having large values and most having small values.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report new evidence that bears decisively on a long-standing controversy in primate systematics. DNA sequence data for the complete cytochrome b gene, combined with an expanded morphological data set, confirm the results of a previous study and again indicate that all extant Malagasy lemurs originated from a single common ancestor. These results, as well as those from other genetic studies, call for a revision of primate classifications in which the dwarf and mouse lemurs are placed within the Afro-Asian lorisiforms. The phylogenetic results, in agreement with paleocontinental data, indicate an African origin for the common ancestor of lemurs and lorises (the Strepsirrhini). The molecular data further suggest the surprising conclusion that lemurs began evolving independently by the early Eocene at the latest. This indicates that the Malagasy primate lineage is more ancient than generally thought and places the split between the two strepsirrhine lineages well before the appearance of known Eocene fossil primates. We conclude that primate origins were marked by rapid speciation and diversification sometime before the late Paleocene.