41 resultados para CD4 T lymphocyte count
em National Center for Biotechnology Information - NCBI
Resumo:
CD4+ T lymphocyte clones, generated from mice immunized with the methylcholanthrene-induced fibrosarcoma Meth A (H-2d), are restricted by I-Ed and recognize a unique antigen on Meth A. The antigen has been purified and characterized as the ribosomal protein L11. The antigenic epitope is contained within the sequence EYELRKHNFSDTG and is generated by substitution of Asn by His (italic) caused by a single point mutation. The tumor contains the wild-type and the mutated alleles. Immunization of BALB/cJ mice with the mutated epitope but not with the wild-type epitope protects mice against a subsequent challenge with the Meth A sarcoma. Adoptive transfer of CD4+ clones into BALB/c mice renders the mice specifically resistant to Meth A sarcoma. The mutated L11 epitope is thus shown to be an immunoprotective epitope in vivo by several criteria.
Resumo:
Certain HLA-B antigens have been associated with lack of progression to AIDS. HLA-B alleles can be divided into two mutually exclusive groups based on the expression of the molecular epitopes HLA-Bw4 and HLA-Bw6. Notably, in addition to its role in presenting viral peptides for immune recognition, the HLA-Bw4, but not HLA-Bw6, motif functions as a ligand for a natural killer cell inhibitory receptor (KIR). Here, we show that profound suppression of HIV-1 viremia is significantly associated with homozygosity for HLA-B alleles that share the HLA-Bw4 epitope. Furthermore, homozygosity for HLA-Bw4 alleles was also significantly associated with the ability to remain AIDS free and to maintain a normal CD4 T cell count in a second cohort of HIV-1-infected individuals with well defined dates of seroconversion. This association was independent of the presence of a mutation in CC chemokine receptor 5 (CCR5) associated with resistance to HIV-1 infection, and it was independent of the presence of HLA alleles that could potentially confound the results. We conclude that homozygosity for HLA-Bw4-bearing B alleles is associated with a significant advantage and that the HLA-Bw4 motif is important in AIDS pathogenesis.
Resumo:
Defining the rate at which T cells turn over has important implications for our understanding of T lymphocyte homeostasis and AIDS pathogenesis, yet little information on T cell turnover is available. We used the nucleoside analogue bromodeoxyuridine (BrdUrd) in combination with five-color flow cytometric analysis to evaluate T lymphocyte turnover rates in normal and simian immunodeficiency virus (SIV)-infected rhesus macaques. T cells in normal animals turned over at relatively rapid rates, with memory cells turning over more quickly than naive cells. In SIV-infected animals, the labeling and elimination rates of both CD4+ and CD8+ BrdUrd-labeled cells were increased by 2- to 3-fold as compared with normal controls. In normal and SIV-infected animals, the rates of CD4+ T cell BrdUrd-labeling and decay were closely correlated with those of CD8+ T cells. The elimination rate of BrdUrd-labeled cells was accelerated in both naive and memory T lymphocytes in SIV-infected animals. Our results provide direct evidence for increased rates of both CD4+ and CD8+ T cell turnover in AIDS virus infection and have important implications for our understanding of T cell homeostasis and the mechanisms responsible for CD4+ T cell depletion in AIDS.
Resumo:
IN adult mice, the dominant adhesion molecules involved in homing to lymph nodes are L-selectin homing receptors on lymphocytes and the peripheral lymph node addressins on specialized high endothelial venules. Here we show that, from fetal life through the first 24 hr of life, the dominant adhesion molecules are the mucosal addressin MAdCAM-1 on lymph node high endothelial venules and its counterreceptor, the Peyer's patch homing receptor, integrin alpha 4 beta 7 on circulating cells. Before birth, 40-70% of peripheral blood leukocytes are L-selectin-positive, while only 1-2% expresses alpha 4 beta 7. However, the fetal lymph nodes preferentially attract alpha 4 beta 7-expressing cells, and this can be blocked by fetal administration of anti-MAdCAM-1 antibodies. During fetal and early neonatal life, when only MAdCAM-1 is expressed on high endothelial venules, an unusual subset of CD4 + CD3- cells, exclusively expressing alpha 4 beta 7 as homing receptors, enters the lymph nodes. Beginning 24 hr after birth a developmental switch occurs, and the peripheral node addressins are upregulated on high endothelial venules in peripheral and mesenteric lymph nodes. This switch in addressin expression facilitates tissue-selective lymphocyte migration and mediates a sequential entry of different cell populations into the lymph nodes.
Resumo:
The relative deficiency of T helper type 1 (Th1) and cytotoxic T lymphocyte (CTL) responses in early life is associated with an increased susceptibility to infections by intracellular microorganisms. This is likely to reflect a preferential polarization of immature CD4 T cells toward a Th2 rather than a Th1 pattern upon immunization with conventional vaccines. In this report, it is shown that a single immunization within the first week of life with DNA plasmids encoding viral (measles virus hemagglutinin, Sendai virus nucleoprotein) or bacterial (C fragment of tetanus toxin) vaccine antigens can induce adult-like Th1 or mixed Th1/Th2 responses indicated by production of IgG2a vaccine-specific antibodies and preferential secretion of interferon-γ (IFN-γ) compared with interleukin (IL)-5 by antigen-specific T cells, as well as significant CTL responses. However, in spite of this potent Th1-driving capacity, subsequent DNA immunization was not capable of reverting the Th2-biased responses induced after early priming with a recombinant measles canarypox vector. Thus, DNA vaccination represents a novel strategy capable of inducing Th1 or mixed Th1/Th2 and CTL responses in neonates and early life, providing it is performed prior to exposure to Th2-driving conventional vaccine antigens.
Resumo:
HIV entry into human cells is mediated by CD4 acting in concert with one of several members of the chemokine receptor superfamily. The resistance to HIV infection observed in individuals with defective CCR5 alleles indicated that this particular chemokine receptor plays a crucial role in the initiation of in vivo HIV infection. Expression of human CD4 transgene does not render mice susceptible to HIV infection because of structural differences between human and mouse CCR5. To ascertain whether expression of human CD4 and CCR5 is sufficient to make murine T lymphocytes susceptible to HIV infection, the lck promoter was used to direct the T cell-specific expression of human CD4 and CCR5 in transgenic mice. Peripheral blood mononuclear cells and splenocytes isolated from these mice expressed human CD4 and CCR5 and were infectible with selected M-tropic HIV isolates. After in vivo inoculation, HIV-infected cells were detected by DNA PCR in the spleen and lymph nodes of these transgenic mice, but HIV could not be cultured from these cells. This indicated that although transgenic expression of human CD4 and CCR5 permitted entry of HIV into the mouse cells, significant HIV infection was prevented by other blocks to HIV replication present in mouse cells. In addition to providing in vivo verification for the important role of CCR5 in T lymphocyte HIV infection, these transgenic mice represent a new in vivo model for understanding HIV pathogenesis by delineating species-specific cellular factors required for productive in vivo HIV infection. These mice should also prove useful for the assessment of potential therapeutic and preventative modalities, particularly vaccines.
Resumo:
Cluster of differentiation antigen 4 (CD4), the T lymphocyte antigen receptor component and human immunodeficiency virus coreceptor, is down-modulated when cells are activated by antigen or phorbol esters. During down-modulation CD4 dissociates from p56lck, undergoes endocytosis through clathrin-coated pits, and is then sorted in early endosomes to late endocytic organelles where it is degraded. Previous studies have suggested that phosphorylation and a dileucine sequence are required for down-modulation. Using transfected HeLa cells, in which CD4 endocytosis can be studied in the absence of p56lck, we show that the dileucine sequence in the cytoplasmic domain is essential for clathrin-mediated CD4 endocytosis. However, this sequence is only functional as an endocytosis signal when neighboring serine residues are phosphorylated. Phosphoserine is required for rapid endocytosis because CD4 molecules in which the cytoplasmic domain serine residues are substituted with glutamic acid residues are not internalized efficiently. Using surface plasmon resonance, we show that CD4 peptides containing the dileucine sequence bind weakly to clathrin adaptor protein complexes 2 and 1. The affinity of this interaction is increased 350- to 700-fold when the peptides also contain phosphoserine residues.
Resumo:
β2-Microglobulin-deficient (β2m−) mice generate a CD4+ major histocompatibility complex class II-restricted cytotoxic T-lymphocyte (CTL) response following infection with lymphocytic choriomeningitis (LCM) virus (LCMV). We have determined the cytotoxic mechanism used by these CD4+ CTLs and have examined the role of this cytotoxic activity in pathogenesis of LCM disease in β2m− mice. Lysis of LCMV-infected target cells by CTLs from β2m− mice is inhibited by addition of soluble Fas-Ig fusion proteins or by pretreatment of the CTLs with the protein synthesis inhibitor emetine. In addition, LCMV-infected cell lines that are resistant to anti-Fas-induced apoptosis are refractory to lysis by these virus-specific CD4+ CTLs. These data indicate that LCMV-specific CD4+ CTLs from β2m− mice use a Fas-dependent lytic mechanism. Intracranial (i.c.) infection of β2m− mice with LCMV results in loss of body weight. Fas-deficient β2m−.lpr mice develop a similar wasting disease following i.c. infection. This suggests that Fas-dependent cytotoxicity is not required for LCMV-induced weight loss. A potential mediator of this chronic wasting disease is tumor necrosis factor (TNF)-α, which is produced by LCMV-specific CD4+ CTLs. In contrast to LCMV-induced weight loss, lethal LCM disease in β2m− mice is dependent on Fas-mediated cytotoxicity. Transfer of immune splenocytes from LCMV-infected β2m− mice into irradiated infected β2m− mice results in death of recipient animals. In contrast, transfer of these splenocytes into irradiated infected β2m−.lpr mice does not cause death. Thus a role for CD4+ T-cell-mediated cytotoxicity in virus-induced immunopathology has now been demonstrated.
Resumo:
Accumulating evidence suggests that the mitochondrial molecular chaperone heat shock protein 60 (hsp60) also can localize in extramitochondrial sites. However, direct evidence that hsp60 functions as a chaperone outside of mitochondria is presently lacking. A 60-kDa protein that is present in the plasma membrane of a human leukemic CD4+ CEM-SS T cell line and is phosphorylated by protein kinase A (PKA) was identified as hsp60. An 18-kDa plasma membrane-associated protein coimmunoprecipitated with hsp60 and was identified as histone 2B (H2B). Hsp60 physically associated with H2B when both molecules were in their dephospho forms. By contrast, PKA-catalyzed phosphorylation of both hsp60 and H2B caused dissociation of H2B from hsp60 and loss of H2B from the plasma membrane of intact T cells. These results suggest that (i) hsp60 and H2B can localize in the T cell plasma membrane; (ii) hsp60 functions as a molecular chaperone for H2B; and (iii) PKA-catalyzed phosphorylation of both hsp60 and H2B appears to regulate the attachment of H2B to hsp60. We propose a model in which phosphorylation/dephosphorylation regulates chaperoning of H2B by hsp60 in the plasma membrane.
Resumo:
The murine γ-herpesvirus 68 replicates in epithelial sites after intranasal challenge, then persists in various cell types, including B lymphocytes. Mice that lack CD4+ T cells (I-Ab−/−) control the acute infection, but suffer an ultimately lethal recrudescence of lytic viral replication in the respiratory tract. The consequences of CD4+ T cell deficiency for the generation and maintenance of murine γ-herpesvirus 68-specific CD8+ set now have been analyzed by direct staining with viral peptides bound to major histocompatibility complex class I tetramers and by a spectrum of functional assays. Both acutely and during viral reactivation, the CD8+ T cell responses in the I-Ab−/− group were no less substantial than in the I-Ab+/+ controls. Indeed, virus-specific CD8+ T cell numbers were increased in the lymphoid tissue of clinically compromised I-Ab−/− mice, although relatively few of the potential cytotoxic T lymphocyte effectors were recruited back to the site of pathology in the lung. Thus the viral reactivation that occurs in the absence of CD4+ T cells was not associated with any exhaustion of the virus-specific cytotoxic T lymphocyte response. It seems that CD8+ T cells alone are insufficient to maintain long-term control of this persistent γ-herpesvirus.
Resumo:
Similarities in the phenotypes of mice deficient for cytotoxic T lymphocyte antigen-4 (CTLA-4) or transforming growth factor-β1 (TGF-β1) and other observations have led to speculation that CTLA-4 mediates its inhibitory effect on T cell activation via costimulation of TGF-β production. Here, we examine the role of TGF-β in CTLA-4-mediated inhibition of T cell activation and of CTLA-4 in the regulation of TGF-β production. Activation of AND TCR transgenic mouse T cells with costimulatory receptor-specific antigen presenting cells results in efficient costimulation of proliferation by CD28 ligation and inhibition by CTLA-4 ligation. Neutralizing antibody to TGF-β does not reverse CTLA-4-mediated inhibition. Also, CTLA-4 ligation equally inhibits proliferation of wild-type, TGF-β1−/−, and Smad3−/− T cells. Further, CTLA-4 engagement does not result in the increased production of either latent or active TGF-β by CD4+ T cells. These results indicate that CTLA-4 ligation does not regulate TGF-β production and that CTLA-4-mediated inhibition can occur independently of TGF-β. Collectively, these data demonstrate that CTLA-4 and TGF-β represent distinct mechanisms for regulation of T cell responses.
Resumo:
We describe a novel approach to assay the ability of particular gene products to signal transitions in lymphocyte differentiation in vivo. The method involves transfection of test expression constructs into RAG-1-deficient embryonic stem cells, which are subsequently assayed by the RAG-2-deficient blastocyst complementation approach. We have used this method to demonstrate that expression of activated Ras in CD4-8- (double negative, DN) prothymocytes in vivo induces their differentiation into small CD4+8+ (double positive, DP) cortical thymocytes with accompanying expansion to normal thymocyte numbers. However, activated Ras expression in DP cells does not cause proliferation or maturation to CD4+8- or CD4-8+ (single positive) thymocytes. Therefore, signaling through Ras is sufficient for promoting differentiation of DN to DP cells, but further differentiation requires the activity of additional signaling pathways.
Resumo:
Anergy is a major mechanism to ensure antigen-specific tolerance in T lymphocytes in the adult. In vivo, anergy has mainly been studied at the cellular level. In this study, we used the T-cell-activating superantigen staphylococcal enterotoxin A (SEA) to investigate molecular mechanisms of T-lymphocyte anergy in vivo. Injection of SEA to adult mice activates CD4+ T cells expressing certain T-cell receptor (TCR) variable region beta-chain families and induces strong and rapid production of interleukin 2 (IL-2). In contrast, repeated injections of SEA cause CD4+ T-cell deletion and anergy in the remaining CD4+ T cells, characterized by reduced expression of IL-2 at mRNA and protein levels. We analyzed expression of AP-1, NF-kappa B, NF-AT, and octamer binding transcription factors, which are known to be involved in the regulation of IL-2 gene promoter activity. Large amounts of AP-1 and NF-kappa B and significant quantities of NF-AT were induced in SEA-activated CD4+ spleen T cells, whereas Oct-1 and Oct-2 DNA binding activity was similar in both resting and activated T cells. In contrast, anergic CD4+ T cells contained severely reduced levels of AP-1 and Fos/Jun-containing NF-AT complexes but expressed significant amounts of NF-kappa B and Oct binding proteins after SEA stimulation. Resolution of the NF-kappa B complex demonstrated predominant expression of p50-p65 heterodimers in activated CD4+ T cells, while anergic cells mainly expressed the transcriptionally inactive p50 homodimer. These alterations of transcription factors are likely to be responsible for repression of IL-2 in anergic T cells.
Resumo:
The importance of receptor binding in the potent immunogenicity of Escherichia coli heat-labile enterotoxin B subunit (EtxB) was tested by comparing its immunogical properties with those of a receptor binding mutant, EtxB(G33D). Subcutaneous immunization of EtxB(G33D) resulted in 160-fold reduction in antibody titer compared with wild-type EtxB, whereas its oral delivery failed to provoke any detectable secretory or serum anti-B subunit responses. Moreover, the two proteins induced strikingly different effects on lymphocyte cultures in vitro. EtxB, in comparison with EtxB(G33D), caused an increase in the proportion of B cells, many of which were activated (CD25+); the complete depletion of CD8+ T cells; an increase in the activation of CD4+ T cells; and an increase in interleukin 2 and a decrease in interferon gamma. These data indicate that EtxB exerts profound effects on immune cells, suggesting that its potent immunogenicity is dependent not only on efficient receptor-mediated uptake, but also on direct receptor-mediated immunomodulation of lymphocyte subsets.
Resumo:
The experiments presented in this report were designed to specifically examine the role of CD4–major histocompatibility complex (MHC) class II interactions during T cell development in vivo. We have generated transgenic mice expressing class II molecules that cannot interact with CD4 but that are otherwise competent to present peptides to the T cell receptor. MHC class II expression was reconstituted in Aβ gene knock-out mice by injection of a transgenic construct encoding either the wild-type I-Aβb protein or a construct encoding a mutation designed to specifically disrupt binding to the CD4 molecule. We demonstrate that the mutation, EA137 and VA142 in the β2 domain of I-Ab, is sufficient to disrupt CD4–MHC class II interactions in vivo. Furthermore, we show that this interaction is critical for the efficient selection of a complete repertoire of mature CD4+ T helper cells as evidenced by drastically reduced numbers of conventional CD4+ T cells in animals expressing the EA137/VA142 mutant I-Ab and by the failure to positively select the transgenic AND T cell receptor on the mutated I-Ab. These results underscore the importance of the CD4–class II interaction in the development of mature peripheral CD4+ T cells.