4 resultados para CANOPY COVER

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transition of many Caribbean reefs from coral to macroalgal dominance has been a prominent issue in coral reef ecology for more than 20 years. Alternative stable state theory predicts that these changes are reversible but, to date, there is little indication of this having occurred. Here we present evidence of the initiation of such a reversal in Jamaica, where shallow reefs at five sites along 8 km of coastline now are characterized by a sea urchin-grazed zone with a mean width of 60 m. In comparison to the seaward algal zone, macroalgae are rare in the urchin zone, where the density of Diadema antillarum is 10 times higher and the density of juvenile corals is up to 11 times higher. These densities are close to those recorded in the late 1970s and early 1980s and are in striking contrast to the decade-long recruitment failure for both Diadema and scleractinians. If these trends continue and expand spatially, reefs throughout the Caribbean may again become dominated by corals and algal turf.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies of photosynthetic acclimation to elevated CO2 have focused on the most recently expanded, sunlit leaves in the canopy. We examined acclimation in a vertical profile of leaves through a canopy of wheat (Triticum aestivum L.). The crop was grown at an elevated CO2 partial pressure of 55 Pa within a replicated field experiment using free-air CO2 enrichment. Gas exchange was used to estimate in vivo carboxylation capacity and the maximum rate of ribulose-1,5-bisphosphate-limited photosynthesis. Net photosynthetic CO2 uptake was measured for leaves in situ within the canopy. Leaf contents of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), light-harvesting-complex (LHC) proteins, and total N were determined. Elevated CO2 did not affect carboxylation capacity in the most recently expanded leaves but led to a decrease in lower, shaded leaves during grain development. Despite this acclimation, in situ photosynthetic CO2 uptake remained higher under elevated CO2. Acclimation at elevated CO2 was accompanied by decreases in both Rubisco and total leaf N contents and an increase in LHC content. Elevated CO2 led to a larger increase in LHC/Rubisco in lower canopy leaves than in the uppermost leaf. Acclimation of leaf photosynthesis to elevated CO2 therefore depended on both vertical position within the canopy and the developmental stage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present evidence that a novel phytochrome (other than phytochromes A and B, PHYA and PHYB) operative in green plants regulates the "twilight-inducible" expression of a plant homeobox gene (Athb-2). Light regulation of the Athb-2 gene is unique in that it is not induced by red (R)-rich daylight or by the light-dark transition but is instead induced by changes in the ratio of R to far-red (FR) light. These changes, which normally occur at dawn and dusk (end-of-day FR), also occur during the daytime under the canopy (shade avoidance). By using pure light sources and phyA/phyB null mutants, we demonstrated that the induction of Athb-2 by changes in the R/FR ratio is mediated for the most part by a novel phytochrome operative in green plants. Furthermore, PHYB plays a negative role in repressing the accumulation of Athb-2 mRNA in the dark and a minor role in the FR response. The strict correlation of Athb-2 expression with FR-induced growth phenomena suggests a role for the Athb-2 gene in mediating cell elongation. This interpretation is supported by the finding that the Athb-2 gene is expressed at high levels in rapidly elongating etiolated seedlings. Furthermore, as either R or FR light inhibits cell elongation in etiolated tissues, they also down-regulate the expression of Athb-2 mRNA. Thus, these data support the notion that changes in light quality perceived by a novel phytochrome regulate plant development through the action of the Athb-2 homeobox gene.